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The work on 0NR Contract #N00014-84-K-0027 s progressed

steadily during the first year of the contract. A major focus

of the first year was on the mixed-mode fracture problem.

Theoretical work on the computational methodology for the

calculation of mixed-mode stress intensity factors was

performed. The convergence properties of several algorithms

were delineated and guidelines for the accurate calculation of

mixed-mode stress intensity factors were established. This

study also investigated the effects and influence of loading

holes on the calculations, (loading holes are usually ignored in , -- ,

theoretical studies, if they are modeled, they are usually

modeled poorly). While previous studies have investigated the

accurate modeling of loading holes, their influence on fracture

specimens had not been sufficiently explored. In addition to

these fundamental studies, a proposed mixed-mode specimen was

carefully analyzed. This specimen (originally designed by

Professor H. Richard) has been proposed for studies near the

range of pure Mode 1I loading (so-called "pure shear"). The

calculations demonstrated the utility of the specimen for

measuring critical shear conditions for pure Mode II failure.

This study was performed in conjunction with an exchange

student to The George Washington University (Mr. Peter

Bauerle). His final report carefully documents the work

S "performed and is included as Appendix A of this report.

Concurrent with the theoretical work, independent

experimental verification of this fracture specimen was per-

r7
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formed. Several refinements were made to the original design..1 "

This design (which involves a very specialized grip

configuration) was constructed and tested. PMMA specimens were

tested to determine the failure envelope under the full range

of mixed-mode loading. In addition, uncracked specimens were

tested to determine their resistance to shear loading. The

results demonstrate the ability of this loading grip system to

accurately induce the full range (from pure Mode I to pure Mode

II) of planer mixed-mode loading conditions. This study was -:

also performed in conjunction with an exchange student to The - XI..

George Washington University (Mr. Roland Gerstner). His final

report completely covers the work performed and is included as

Appendix B of this report.

Most of the previous recent fracture research sponsored by

ONR focused on studying the nature of plastic deformation in

the vicinity of three-dimensional crack fronts. These studies

were completed during this contract year. Experimental surface

contractions were measured and compared with finite element

predictions. For the worst cases, the results agreed within

4%. The plasticity model employed and the finite element grid

convergence were, therefore demonstrated. In addition, several

global response parameters were compared with an experiment.

It was shown that global parameter agreement does not guarantee

accurate local modeling. The results of this study are
.. ,

included in a paper entitled "Prediction of Plasticity

Characteristics for Three-Dimensional Fracture Specimens -
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Comparison with Experiment" which has been accepted for

publication in Engineering Fracture Mechanics. This paper is
included as Appendix C of this report.

Jp 4b

The three-dimensional plasticity studies have also

demonstrated many of the local response characteristics near a

crack front. Having established the accuracy of the modeling,

the response of the interior of the specimen can now be

accurately predicted. The influence of hardening, specimen -..

thickness, local relaxation, crack growth, etc., was accurately

predicted and investigated for straight crack, Mode I

specimens. While no conclusions regarding appropriate failure

criteria have been drawn, it was demonstrated that the failure

was definitely governed by a local parameter and it should be

related to the local deformation response. Previous studies

have indicated the inadequacy of a global failure parameter,

however, the local deformation characteristics have only now

been delineated and verified. The results were presented as an

invited paper at the American Society of Metals meeting held in

Salt Lake City, Utah (December, 1985). This paper is included

as Appendix D of this report. This paper will subsequently be

published in the proceedings of this conference by the American

Society of Metals.

The major focus of this contract has been to develop the

methodology and to begin a systematic study into the fracture

*behavior of specimens subjected to high temperatures. To this

S.-- end, a test system for the high temperature and mechanical

t . - , . .
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loading of specimens was procured, installed and tested. After

P verifying the instrumentation, preliminary studies were

performed to delineate the constitutive behavior of Inconel 718

when loaded at elevated temperatures (temperatures above

500 0 C). Uniaxial tests were performed and the data was "fit"

with several constitutive models. Upon the completion of

uniaxial testing, the experimental work focused on establishing

the instrumentation necessary to study crack growth phenomena.

Attention is focusing on accurate measurement of crack mouth

opening behavior for modeling purposes. In addition,

preliminary tests are being run to determine the requisite

loading to produce different crack growth rates of importance

for application. The experimental work to date is summarized

in Appendix E of this report. This Appendix also covers the

constitutive modeling being done.

Concurrent with the experimental and constitutive

modeling, work has focused on developing and testing a finite

element code to perform fracture analyses. The preliminary

code using a simple constitutive model has been completed and

tested. Work is underway to build in crack growth

capabilities, large strain modeling and alternative

constitutive models with mixed hardening properties. The

formulations being employed are discussed in Appendix F of this

report.

In addition to the work discussed above, two other publi-

cations were produced which summarized and concluded previous

- .. .
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work performed under ONR support. These papers: "Finite

Element Methodology for Elastic-Plastic Fracture Problems in N
3-Dimensions" and "Effect of Specimen Thickness on Crack Front

Plasticity Characteristics in Three-Dimensions" are included as

Appendices G and H of this report.

As is evident from this report and the publications

included, much has been accomplished in the first year of this

contract. The next year will be spent establishing the basic

experimental and numerical approaches for accurate modeling and

investigation of creep fracture processes. While our efforts

are producing useful and informative results, we have only

scratched the surface of this problem.

.- .
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ABSTRACT

Stress intensity factors are material independent

parameters which measure the stress and strain distribution at

the tip of a crack in a loaded solid body. These stress

intensity factors contain the geometry of the crack. They

enable to predict if a prescribed load can be applied to a

damaged material without losing the required safety.

In this research all calculations were done with the finite

element program APES which uses 12-node quadrilateral

isoparametric elements. In order to obtain the singularities

at the crack tip, the following two crack tip elements were

utilized:

enriched elements

- collapsed cubic isoparametric elements

(1 & A point elements)
9 9

Since the stiffness matrix of the enriched elements already

contains the singularity functions, KI and KII can be

calculated together with the displacements by the computer

program. Using the collapsed cubic isoparametric elements, the

stress intensity factors KI and KI1 have to be determinated

with the aid of crack border displacement functions after the

run of the program.

These calculations were done for a special specimen

developed by H. A. Richard for mixed mode problems. Also, the

influence of the holes where the forces are applied was studied.

r7r*. :~.. *... ° -- "
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~ 1. INTRODUCTION

" During the last 20 years many investigations have been done

to determine the stress intensity factor KI (Mode I) where

the forces are applied perpendicular to the crack. However,

most cracks lead to mixed mode problems where also the stress

intensity factor KII (Mode II, see Figure 1) has to be taken

into consideration. For this case it is important to develop

methods which allow to determine both, K1 and Kl1  more

accurately. Only dependable stress intensity factors allow an

engineer to decide whether a damaged part of a machine or a

building can be used without lqsing the required safety.

In this paper, the finite element program APES will be

utilized to determine the two-dimensional stress intensity

factors K1 and Kii. The 12-node quadrilateral

isoparametric elements of this program already lead to a high

accuracy with a relative small number of elements, compared to

lower order elements of other finite element programs.

On the following pages, only plane strain will be taken

into consideration. Plane strain means that along the z-axis

(third dimension) no strains are allowed according to the

Poisson's ratio. Therefore, in addition to the stresses in x-

and y-direction also stresses in z-direction have to come into

being. In reality, this state of stress can just be realized

in the middle of the crack tip of a Compact Tension Shear

c.-- .'i i-

...............................
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specimen if the specimen is thick enough. Plane strain

represents the crucial load case of a CTS specimen which leads

to cleavage fracture without any prior plastic deformation.

° .
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.7.' -A.. -A



ELEMENT ,

The APES program, with which this research was done,

utilizes the 12-node cubic isoparametric element (shown in F.

Figure 2). One 12-node element, given in the x,y coordinate

system, can be transformed into the natural , n coordinate i.':

system where the element is mapped to a square and the, ;,

coordinates are dimensionless (1]..'.

The displacement components can be written in the form,.,.---

,12_

u = Z NiCE,n) u. I":-'-. _

i~~=l "''

u~v are the components of the displacements of a point with the"..,

,..

.:. coordinates E, n, whereas ui , v i are the displacement .:-._

":' components of the node i. Ni(E, n) represent the shape ::

"- ~functions or interpolation functions at the node i which are--"

given by

. - * . ." "

ii: ~ ~N(E,n) =  (I* i(l +j nni)[- I0 + 9( W '] .'':

2 h%

S l0 + .....
, ~( 3 ) ..;

system,~canbe edi(t + 9nni)(tural -n

coordinate ar dieninls (1].

12

u .1 nni)(1 i)(1 E2) )(( 1)

= 12

" = : N.( ,n)'..-(2

... . . . . . • .•-°- ,- . -°-° ° . ° ° • . • • . . . - .""" -." "'-""" """""i - ., -':;: - : ,--l- "1. 1"..,. , ., "'." < '' -'''-,-. -'--' ----' . ......
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where , ni are the coordinates of the point i. It has to be

mentioned as the important feature of the cubic isoparametric

elements, that the same shape functions are utilized to

describe the geometry of the 12-node elements in the x, y

coordinate system.

12
x = r Ni.(,n) xi (4)

i=1 1.

12
y= . Ni(En) xi  (5)i=1 .1..-.

where xi, yi represent the nodes of the element in the x, y

coordinate system. Evaluating the shape functions at each node

i, N( ,rn ) becomes:

E.J

. ... -



1 = N1,= (1 - n)(1 -)[- 10 + 9(&2 +T2)

RN n 2(1-) (1 &2) (1 3E),,.

N3 =-(1 - )(1 -2)(1 + 3&)

N4  3(1 - n)(1 + )[- 10 + 9(g2 +

NS 9 ( + E) (1 -r,2)( -l 3n)

N =--(1 + {)(1 - 2 )(1 - 3n)

N 1 (1 + n)(1 + &)[- 10 + 9(E2 + n2)

N 1 + n)(1 - €2)(1 3 &{)

N 9  (1 + n)(1 - &2)(1 - 3E) :

N0 1 + )(1 - )[-10 + 9(2 n2)]-
N1 =  -(l + n).((

N 1- - )(1 - 12 )(1 + 3n)

if .3.2-Cl

The element stiffness matrix (K] can be written in the form

[K] = f f [B]T[D][B] det IJI d& dn (6)-1 -1 '

.1 2 "'%

.............................................................
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where [B] is given by

* [E]: strain field
[ ] =[B] [u] [u]: displacement field (7

[B] = [...,B . . . . . ]

aN1
(B1] T= 0

3N

aNi  -N

[D] is the material stiffness matrix for plane stress:

1 V 0
[D] vE

"" 0 0'"

(8)
for plane strain [2]

1-v) 0 0--'

v (l-v) 0
E0[D] 0 1v(-v 1v(-v

0 0 2(1Fv

.. "-..

• .. ' - .-

.- j ( )-

.................................................... .--.
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" [J] represents the Jacobian matrix (transformation matrix)

3N.

[j] = (9)

n• ;n 
-3.

If det ili is zero, stress and strains become singular.

The advantages of the 12-node quadrilateral isoparametric

elements are [31:

the edges of the elements can take the shape of a

cubic function. Therefore, the 12-node elements can

be easily adapted to many practical problems.

- strains and stresses vary cubically over the element,

which means that only a few elements are sufficient to

simulate the required stress and strain distribution

in a solid.

' v.-

• .° °
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3. CRACK-TIP ELEMENTS

In order to simulate the nodal crack tip singularity in a

proper way, the finite elements around the crack tip have to

reproduce the strain singularity. The finite element program

APES already contains enriched elements which take the strain

singularity into account with the aid of specific singular

assumptions.

3.1 Enriched Elements

3.1.1 Introduction to the Enriched Elements

The enriched elements have the same shape like the ordinary

cubic isoparametric elements and they can be adapted to the

required geometry of the specimen in the same way. In order to

simulate the strain singularity at the crack tip special

singular functions are utilized.

S. E. Benzley describes the displacement assumptions for

enriched elements with 4 nodes (4]. For 12-node elements these

displacement functions can be written as follows:

12 12
Ui = E k Uik + R {KI(Q 1 i - E fk 7lik )

k= 1 k= 1
(10)

+ KII(Q 2 i - £k 2 ik)

k= 1
k- . ""

K- .
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where uik nodal displacements

f shape functions

Qli'Q2i = special singular assumptions

QlikQ2ik = the value of Qli'Q2i evaluated

at node k

R -correction function.

The correction function R provides for a disappearance of S

the singular assumptions at the borders where both, enriched

and 12-node cubic isoparametric elements, have to fit

together. However, these compatibility conditions are just

satisfied directly at the nodes. Between the nodes, the

displacements of these two different elements are not

coincident.

Strains are obtained by the derivation of the displacements

and they are not continuous at the border of enriched and

ordinary 12-node elements. Therefore, strains and stresses are

not correct close to the crack tip and they can not be utilized

for the determination of the stress intensity factors. The

stiffness matrix of the enriched elements becomes [4):

K II ,I- ?T

K u F

... ... ......
... .. .( 11 ) -.:

K2 1  K2 KI
K1

iL
* F

:-"_ .. -_-:._4: _-. - - - . ..... .......... _.. . . . .. . .. . .1,
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where u = element nodal displacements

K11 . regular

K2 2 = stiffness matrix from enriched terms

K12 . coupled stiffness matrix from regular and

enriched terms

= singular load vector which becomes a null vector

if no enriched element is on a loaded boundary.

The equation system (11) points out that all singular

assumptions of the enriched elements are contained in the

stiffness matrix and that the stress intensity factors K1 and

K11 can be evaluated directly by the program with the

displacements.

Furthermore, it is advantageous that the size of the

enriched elements can be quite large without losing

considerable accuracy. Therefore, complete problems can be

solved quite easily within a short data preparation time.

Usually, enriched elements are working within an accuracy of

about 5%.

However, it has to be noted that smaller enriched elements

need not necessarily lead to a higher accuracy which is the

case for 1 & 4 point elements.
99

3.1.2 Application of the Enriched Elements

The determination of the stress intensity factors K1 and

K11 was done using a special specimen developed by

H. A. Richard for mixed mode problems [5], shown in Figure 3.

-. . - , - . -, - ., - - - - .- ... .. . . .' -, . .- . . - .. . . , , . . . . , . .- -. -.-'
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f First, a modified compact tension shear specimen was

studied, where the influence of the holes was neglected (Figure

4). Equally distributed stresses were applied.

With the aid of the sinus/cosinus relationship each applied

force F under the load angle a can be decomposed to the forces

F z and Fs where
z s

Fz leads to pure Mode I.

Fs leads to pure Mode 11:::-

It should be mentioned that, in order to obtain pure shear

stress on the elongated crack line for case Mode II, also a

moment M with

M Fs c

has to be applied in opposite direction of Fs. Applied

tensile and shear stresses:

F
for Mode I: wi

for Mode II: TO M 6bmaxM

The shear stress distribution was chosen in the form of a

parabola where

T max = 1.5 r0 (Figure 5)

. . . . .

" . .. . . ,' . , ~ ~~- . , •• . . .,.. . . . . ., .. .. .. ..- .
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Figure 6 and 7 point out the finite element grid of the compact

tension shear specimen with the ideal force application.

Altogether, 20 finite elements are used, whereas 4 enriched

elements are arranged around 4he crack tip.

In Figure 6, the boundary conditions for pure shear are

used: all nodes on the x-axis are constrained in x- and

y-direction. It should be added that for pure shear, according

to the Moor's strain circle (Figure 8), E vanishes in shear

direction, whereas y reaches its maximum. However, because of

the bending moment M there exist tensile and compressive

stresses along the x-axis (Figure 4) which should allow some

displacements of the nodes at the boundaries in x-direction.

This is not possible. Since the maximal tensile and .,

compressive stresses exist at the corners and since the '

boundaries are far away from the crack line, these effects can

be neglected.

In Figure 7, the boundary conditions for pure tension are

shown. Only one node on the x-axis has to be constrained in x-

and y-direction, whereas all other nodes on the boundaries can

move in x-direction. This takes the Poisson's effect into

consideration.

Chart 1, Figure 9 and 10 point out the dimensionless stress

intensity factors K1 and K11 for load application angles

changing from 0 to 90 degrees. a was 0.6.

w

. -. °. .
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3.2 1 4 Point Elements
9 9

3.2.1 Introduction to the 1 4 Point Elements
9 9

In order to achieve the stress and strain singularity at

the crack tip, collapsed cubic isoparametric 12-node elements

can be utilized (Figure 11)[7]. These crack-tip elements have

to be distorted as follows:

all nodes lying on the side of the crack tip have to

overlap (nodes 1,10,11,12). -.

the nodes lying on the sides close to the crack tip

are placed on the points with the distances 1 Z,

9
42 and 2. away from the tip (therefore the name 1 4 .,
9 9 9 -

point elements).

The mathematical proof of the singularity for these elements is

given in [71.

The advantages if these 1 & 4 point elements are:
9 9

- one does not need special crack tip elements.

Ordinary 12-node elements can be utilized.

- smaller 1 & A point elements will lead to a higher
99

accuracy, which is not necessarily the case for

enriched elements.

tI

. . . . . . . . . . . . . . . . . . . . .
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However, these have to be noted as disadvantages:

- because of the higher number of elements, the 1I 4-

point element method is more time consuming than the

enriched element method.

- the stress intensity factors KI and KII have to be

calculated in post-process.

The stress intensity factors K1 and K1  can be obtained

by using the following displacement equations at the crack tip

(Figure 12)[8]:

K1  01 2 e
x ~ cos [L2-k-l) +sin -T]

(13) .

I r e 1 .20

K 1 cos .0 2 (-k i

3 /F sin forplae srai

3 -v for plane stress

1+v

v Poisson's ratio (v= 0.3)
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For e = 900 and e . 1800 KI and KI become e - 900:

""( + ) .AN
e = 90° : + u

"1- C 1) 1
rk k Y 1)

1
( -- ..1:

,.1'

U (u - u ) (16)

7, k

ux

e =1800: K = (17)
(1 - v) .-

KI =KII (I - ) (18)

3.2.2 Optimum Size of the 1 & 4 Point Elements
99

In order to find out the optimum size of the 1 & 4 point

9 9

elements, the problem shown in Figure 13 was studied with the

appropriate boundary conditions.

Figure 14 points out the finite element grid for shear with

which the best results could be obtained. Altogether, 30

finite elements were used, 6 crack tip elements were arranged

around the crack tip. The length 9. of the 1 & 4 point elements
9 9

was 1.23% of the length of the crack a.

,................................ "'. . .

.? ......
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For shear, the stress intensity factors K1 and K1 1 were

evaluated along the e - 1800 line, since this is the only line

where the tensile stresses vanish. The equations (17) and (18)

were utilized. The results can be seen in Figure 15.

Because the nodes of the crack tip are constrained in both

directions the stress intensity factors calculated very close

to the tip have to be neglected (about first two elements).

The stress intensity factors K, and K,, directly at the

crack tip were obtained graphically."I

Figure 16 shows the results of a 12 element mesh using

crack-tip elements (shear). The length of the 1 4 point

9 9

elements was 1% of the crack length. This grid turns out to be

too rigid. U
Figure 17 points out the results of a 36 element grid using

61 4 point elements around the crack tip. It turns out that
9

just increasing the elements without using more crack tip

elements need not necessarily lead to a higher accuracy (Length

of the crack-tip elements: 0.667% of the length of the crack.).

For pure tension, the best results could be obtained along

the e - 900 line where the equations (15) and (16) were used

(Figure 18).

The dimensionless KI and KII factors are (a = 0.6):
w

: . .:.=.:.
-° •.

1222:i:
.. : :.

." ." "." ".. '...'5..""-.." -. .. ....- ". - .-.- .- - . ."-" "- " ." "-" " ." 5 .".5. " ." " ." " . 5 . 5" . ". "" 5. .5. ".5 "" 5 . ". '. -"'.-. -. " 5" 5
-
'-
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The dimensionless KI and KII factors are (a = 0.6):

a 0 90

,K I
3.99 (4.12) 0 (- 0.01)

K II
F KII(-) 0.11 ((-)0.05) 1.57 (1.63)

F.r a equal to zero degree, the dimensionless K factor

becomes 3.99, whereas KII turns out to be - 0.11. Usually

.K should vanish for this loading case. However, this

discrepancy should not be overevaluated, since for Mode I, all

nodes at the crack tip are constrained in both directions.

This restriction can lead to different results.

For a equal to 90 degrees, the dimensionless KII fa.ctor

turns out to be 1.57, whereas KI vanishes.

The values in parentheses show the results of the enriched

element method.

3.2.3 Application of the 1 &, 4 Point Elements to the
919

CTS Specimen
Now, the 1 & 4 point elements are applied to the compact

9 9

tension shear specimen. The stress intensity factors of the

CTS specimen are determined with the aid of the finite element

grid of Figure 19. Twelve 1 & 4 point elements are arranged
9 9

around the crack tip. This grid is utilizing the boundary

o.

• " . %" "" "."." "• .° ", .. . "". " """• ." * " *" * -. . " " . .'."2 ' L '. " ",_
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conditions already shown in Figure 6 and 7. Ideal distributed

forces are applied to the specimen.

There are several reasons why the whole finite element grid

of the CTS spcimen (Figure 19) has to be used and why it can

not be replaced by the grid shown in Figure 14.

First, in Figure 14 all nodes at the crack tip are

constrained in x- and y-direction. This leads to restrictions

which need not represent the reality. All nodes at the crack

tip should be able to move in all directions in order to adapt

to the required situation. This restriction can be the reason

for the inaccurate stress intensity factors close to the crack

tip in Figures 15-18.

Secondly, the boundary conditions of Figure 14 (shear) do
mL

not simulate the boundary conditions for pure shear. According

to equation (14), all nodes along the boundaries should be able

to move in y-direction (6 = 00, KI  0, K11 = 0) except for

the nodes at the crack tip. In Figure 14, this would lead to

instabililty and could not be realized.

The finite element grid of Figure 19 does not use any

boundary conditions at and around the crack tip.

In Figure 20 and 21, it can be seen how the stress

intensity factors are evaluated. For pure tension (Figure

20a,b), the stress intensity factors were determined along

the 6 = 90* line (Figure 12, equations 15 and 16), whereas for

pure shear (Figure 21a,b), the e = 1800 line was utilized along

.the upper crack surface (equations 17 and 18). The calculations

;i. .--
. . . . . . . . . . . . . . . .
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along the upper and lower crack surface lead to identical

results. In Figure 20 and 21, the k factors of all nodes along

the e - 900 or 0 1800 line could be used in order to

determine the stress intensity factors at the crack tip. For

all calculations, the nodal displacements relative to the crack

tip were taken into consideration. Since all nodes of the

crack tip are allowed to move separately, only that crack tip

node was chosen as the reference point which was laying on

the e = 900 or 6 = 1800 line of the respective I 4 point
9 9

element.

In Chart 3, Figure 22 and 23, the dimensionless stress

intensity factors are shown for a = 0.6. For pure tension, the
w

dimensionless KI factor turns out to be 3.98, whereas KII

vanishes. For pure shear, the dimensionless stress intensity

factor KII becomes 1.56, whereas K, is zero.

The results of the 1 & 4 point elements are compared with
9 9

those of the enriched elements and of Richard [9]. Richard

used a superelement in order to simulate the crack tip

singularity. In general, the stress intensity factor of the

1 6 4 point elements and the results of Richard are laying very
9 9

close together. The differences are equal to or smaller than F :

1% and can be neglected. The enriched elements are a little .

bit more inaccurate.

Figure 24 and 25 point out the location of the crack-tip
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• ,.- nodes after applied shearing and tensile stresses. For shear,

the nodes are more distributed in direction of the x-axis,

whereas for Mode I, the crack tip nodes are more arranged along

the y-axis. Unfortunately, it is not possible to find out in

which direction the crack will propagate. The nodes of the

crack-tip elements are randomly distributed.

Figure 26 and 27 show how the crack will behave for the

loading cases tension and shear. For pure tension (Figure 26),

the nodes on the upper crack surface undergo larger

displacements than the nodes of the lower crack surface.

However, in the vicinity of the crack tip, the displacement of

the corresponding nodes on both surfaces are identical.

Figure 27 shows the behavior of both crack surfaces for pure

shear. Along the whole crack line, both surfaces are sliding

against each other as expected. Away from the crack tip, both

crack surfaces are penetrating slightly. This penetration is

very small compared with the displacements in x-direction or

the displacements in Figure 26. It lies within the accuracy of

the program and should not be overevaluated. It can be said

that for pure shear, no penetration occurs along the crack

surface.

1 A
F7.
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4. LOADED HOLES WITHIN A PLATE

4.1 Modelling of the Holes

Up to now, just the ideal force application to the compact

tension shear specimen has been taken into consideration. In F'
reality, the forces are applied with the aid of bolts which

could lead to a different stress and strain distribution around

the crack tip.

In most of the previous examinations just a nodal force was

assumed in the middle of the holes. Also Richard (10] was

working with single nodal forces when he was studying the

stress intensity factors of his CTS specimen.

However, there are required so huge forces in order to be

able to tear apart a CTS specimen that a plastic deformation

comes into being. This plastic deformation leads to a force

application over a broader cross section at the holes. No one

knows how broad this plastic zone will be. -

In this research another approach was done. It was assumed

that the bolts fit exactly into the holes of the CTS specimen

and that the forces can be applied over the hole cross section

of the holes. All calculations were done for the pure elastic

case.

Figure 28 and 29 point out the finite element grids of a

arbitrary plate and a bolt. The boundary conditions of the

bolt are imitating the hole of the plate: the points 1-7 of

the bolt can just move along the tangent of the hole. For

II

.° . ",|
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both, hole and plate, the symmetry could be used.

When the bolt is loaded, a nodal force F is applied in the

center of the bolt in negative y-direction which leads to an

elastic deformation and to reaction forces in the nodes 1-7 in

y-direction. These forces (F1 - F7 ) are applied at the

nodes 1* - 7* of the plate. The displacements of these nodes

(1* - 7*) can be taken as prescribed displacements for the

nodes 1-7 of the bolt. After 9 iterations, the changes of the

forces in the nodes 1-7 of the bolt were less than 1%. The

obtained forces and displacements are given in Chart 2.

It should be mentioned that

13
i F. = 1.3873 = 1.3873 F

i,=1 1

The reason is that the finite element method is based on the ",

principle of virtual displacements which leads to

6WE: work done by external forces

6WE 6wi (19)

6Wi: work done by internal forces

f (aT6e) dV = f (b Au) dV + f (pTAu) dA (20)
V V A
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stress matrix

- strain matrix

b - body force matrix

p exterior surface force matrix

u displacement matrix

surface area

V =volume

Because of the separation of bolt and plate, for the plate,

just the nodal forces F1 ...F1 3 have to be taken into

consideration. Therefore, the resultive force which is applied

to the hole of a plate is

13
Fres = 1.3873 F = Z F. (21)

Figure 30 shows the deformation of the bolt and the plate

under the influence of the applied force F.

Figure 31 and 32 point out the dimensionless stress

distribution around the bolt and the hole of the plate.

4.2 Application of the Holes to the Simplified Compact

Tension Shear Specimen

First, the holes are applied to the simplified CTS specimen

of Figure 12 which leads to Figure 33 (a - 0.6).
w

In Figure 34 it can be seen how the stress intensity

factors K1 and K11 are evaluated for shear. It turns out

. ... ",.,.
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that the difference between the stress intensity factors using

a CTS specimen with and without holes is less than 0.2%. For

both cases K1 is pretty exactly zero (shear).

The dimensionless K factors are:

K1
including the holes: K _ 1.573

tw
1

without the holes: K*I = K .1.576

K* K*
l - 0.19%

12

which lies within the accuracy of the procedure and can be

neglected. Since for pure shear, the shear force is applied to

a single hole and the other two holes are utilized to apply the

bending moment, this case can be considered as the extreme

loading case. For all other loading cases the difference of

the stress intensity factors using specimen with and without

holes will not be more than 0.2%. Therefore, for the following

problems the influence of the holes can be neglected and only

CTS specimen with the application of equally distributed forces

will be used. ,

).4

....................... -.
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4.3 Application of the Holes to a CTS Specimen

Figure 35 shows the CTS specimen with enriched elements

including the holes. In this grid the ideal boundary

conditions could be utilized (statically stable):

- at the upper three holes the required forces are -

applied

- the nodes of the lower holes are fixed in the shown

way: they can move in one direction. In the

direction perpendicular to it prescribed displacements

are used in order to achieve the same force

distribution which is applied to the upper three holes.

With this grid, the boundary conditions of Figure 6 should be-I

tested which are not 100% correct. Unfortunately, this mesh

does not work because the allowed bandwidth of the program was

exceeded.

E J.

-. ~

. .. . . . . . . . . -.. .... . . . . - - . . - - .
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5. EXAMINATION OF DIFFERENT CRACK LENGTHS

Up to now, only one crack length (_A = 0.6) has been studied.
w

In this chapter, also two other crack lengths (A = 0.5 and
w.

a = 0.7) will be examined with the aid of a finite element grid
w

similar to that one of Figure 19. Equally distributed forces

are applied to the specimen.

In Figure 36a-39b, it can be seen how the stress intensity

factors are evaluated for pure tension and pure shear. All

results are put together in Chart 4, Figure 40, 41 and 42.

For pure shear, the dimensionless K11 factors are

1.37(a f 0.5), 1.56(a = 0.6) and 1.74(a = 0.7). Except for
w w w

a = 0.5, all KI factors vanish. For a = 0.5, KI is

w w

slightly negative (- 0.02), which would lead to a penetration

of the crack surfaces. For this loading case,

K is equal to 1.4% which lies within the accuracy of

KII

the program and should not be overevaluated.

All obtained stress intensity factors are compared with the

results of Richard (9]. The differences between the results of

the 1 & I point element method and the results of Richard are
9 9

small, except for the crack length a = 0.5 (a = 900) where
w
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*Richard obtains a K, factor of +0.08. The 1 & point

9 9 rFF
elements lead to IK1  = + 0.02 which is smaller.

For pure tension, the dimensionless K1 factors become

2.81(k 0.5), 3.98(k 0.6) and 6.19(A= 0.7). All stress
w W W

intensity factors KI1 are zero.
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6. SUMMARY

In this research, the stress intensity factors K1 and
I.

KII were evaluated for a special compact tension shear

specimen developed by Richard. Two different crack-tip

elements were utilized: enriched elements and 1 & 4 point
9 9

elements. The finite element grid using enriched elements

leads to quite accurate results with a relative low number of

elements. In order to obtain more accurate results, 1 & 4
99

point elements have to be used. For this case, the size of the

finite elements arranged around the crack tip has to be very

small. The optimum results could be achieved for 1 & A point"

9

elements with an element length of about 1.23% of the crack

length.

Furthermore, the holes were examined where the forces are

applied to the compact tension shear specimen. Two different

finite element grids were compared: one mesh with a force

concentration around the holes and another finite element grid

with equally distributed forces at the whole cross section.

Both finite element grids led to the same results which means

that the CTS specimen is so well designed that the holes do not

have an influence on the stress intensity factors.

Altogether, the stress intensity factors were evaluated for

three different crack lengths. For pure shear, the

dimensionless stress intensity factors K11 become

". 4 . . 4. . . . . .

" ... ..-*-
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1.37(A 0.5), l.56(A, 0.6) and 1.74(A 0.7). KI is pretty
w w w

exactly zero for all three crack lengths.

Fo pr tension, the dimensionless stress intensity

facorsKIturn out to be 2.81l 0.5), 3.98(A =0.6) andM-

6.19(l 0.7), whereas the KII factors vanish.
w

44Q
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MEASUREMENTS

* Length INCH IN.

Force kilo pound kip(lO00 lb.)

Stress a,T) pound/inch 2  psi
. * 2.in.2

Young's Modulus (E) 3 x 107 psi(metals)

Poisson's Ratio (v) 0.3(metals) .

Stress Intensity Factor (K) psi Ain.

CONVERSION FACTORS

1 in. = 2.54cm = 2.54 x 10-2 m

1 lb. - 453.6g = 0.4536 kg I-.

1 psi = 6.8948 x 10 3  N+:. ~ mm -.-,

-" i:-

.-................... *** :%,m
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CHART 1: Dimensionless KI and KII Factors for

Enriched Elements (Ideal Force Application)

a aa 60.6
W

KI  KII

a [°_ W_ t__ _ _-."

0 4.12 - 0.05

15 3.98 0.37

30 3.56 0.77

45 2.91 1.11

60 2.05 1.38

75 1.06 1.56

90- 0.01 1.63

-

a...3

'.r

. .

• °° -

.
-. -"
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CHART 2: Equivalent Forces and Displacements Due to

Bolt Loading

Obtained forces:

Fl 0.12489p

F2 =F 8  0.14789 F7

F3 =Fg 0.14274Fr
13

F4 =Fl 0 = 0.08601

F5  Fl F - 0.12S35 FoF

F7 F 3  0.00844 0F

Obtained displacements: (for F =1) 2

Node # y (x 10-11] x [x 10-11]

1 - 361.9 0.

2 - 375.8 13.5

3 - 334.5 23.6

4 -278.3 7.7

5 -216.9 18.6

6 -131.7 -52.1

7 0. - 60.2

8 - 375.8 - 13.4

9 - 334.5 - 23.6

10 -278.3 - 7.7

11 -216.9 18.6

12 -131.7 52.1

13 0. 60.2



p 3

y~.CHART 3: Dimensionless Stress Intensity Factors for a =0.6
w

a 0 1 6 4 Point Elements Richard Enriched Elements
99

K1  K1  K1  K1  Y K1

/a va -Tav7-aV

0 3.98 0.00 4.02 0.00 4.12 -0.05

15 3.84 0.40 3.89 0.41 3.98 0.37

30 3.45 0.78 3.49 0.78 3.56 0.77 _

45 2.81 1.10 2.86 1.11 2.91 1.11

60 1.99 * 1.35 2.03 1.36 2.05 1.38

75 1.03 1.51 1.06 1.52 1.06 1.56

90 0.00 1.56 0.02 1.57 -0.01 1.63

'A
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Model I

Opening Mode

Mode I

Sliding Mode

Figure 1: Mode I and Mode I
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Figure 2: 12-Node Quadrilateral Isoparametric Element
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Figure 3: Compact Tension Shear Specimen
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Figure 4: Ideal Force Application
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m 3Q = Q: shearing force

bh =2 F F: cross section

Coordinate Transformation:
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Figure 5: Shear Stress Distribution
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Figure 13: Simplified CTS Specimen
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Figure 25: Location of the Crack-Tip Nodes After
Applied Tensile Stresses (~U0.6)
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Figure 26: Crack Near Crack Tip After
Applied Tensile Force
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Figure 38a: K Factor for Pure Tension and a=0.7L



-, -a

..

* 20

10 [

0.5 1.0' [in. I

K1 = 0 a = 3.5 in.
w- 5.0 in.

K t = 2.5 in.

0 a =1 psi

Figure 38b: K Factor for Pure Tension and a=0.7
-.

Nb

:. . .

"-'..KII - 0 a = 3 . i...."."



AO-A166 5?5 CREEP ANO FRACTURE CHARACTERISTICS OF NATERIRLS UI V/4
STRUCTURES AT ELEYNTED TENPERATURES(U) GEORGE

MASHINOTON UNIY MASHINGTON DC SCHOOL OF ENGINEERING AN

I UN C L S S IF IE D .. H L IE D O ITZ 14 FE D 86 N 8 114 - 4 - C-0 02 ? F/ G 2 0/ 1 ± N

Emmmhhhmmh



gas

W-1 LAI
L1.0

Q2q 12.2

L* 6~

11111.5 -11. 1116A-K

ylcRO(,O- A RT



w: S . 0 i n .

k.- Ilt =2. 5 in.

=k 1.74 = 1ps

Figure 39a: K1  Factor for Pure Shear and 2= 0.7wF



:1 44

. -z

0.5 1.0 ri.

KI 0 a - 3.5 in.

w - 5.0 in.
K1  t - 2.5 in.

To a-1 psi

Figure 39b: K1 Factor for Pure Shear and 0.7



Ew

15' 3045 607.5 .

.~~~~F . ....



0.7*

O*1.0..6

1~ 4-.5

& Point Elements

-. - -Richard

Figure 41: Dimensionless K1 Factors for Different Crack Lengths



I0.

-C 0. 6

2w

ww

Figure 42: Dimensionless Stress Intensity Factors for Different
1 4

Crack Lengths &~ ~~ Point Elements)

. . . . ..
. ~ ~ ~ ~ .. .. . .



APPENDIX B:

'iPracture Under Mixed-Mode Loading'O

By: Roland Gerstner.

Final Report, May, 1985.



FRACTURE UNDER MIXED-MODE LOADING

By Roland Gerstner

Advisor: Professor P. K. Poulose

May 1985

77 School of Engineering and Applied Science

The George Washington University

Washington, D.C. 20052

.. . ...-...



N

Abstract

In a literature survey it was found that the CTS

specimen proposed by Richard is the most suitable specimen

for mixed mode experiments, which were conducted with PMiA.

As it was found in tests with CT specimens that the critical

stress intensity %_of PMMA depends on the stress intensity

rate K, the testing was done at a constant I. The fracture

cri ter ion

KIc
KK 2

gives a reasonable fit to the experimental data. Some

problems in mode II testing with the CTS specimen were found

that need further consideration. In additional tests the

modulus of elasticity and the Poisson ratio were obtained.

I -.
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I Introduction

While mode I fracture mechanics are well established and

commonly used, mixed mode fracture mechanics did not reach

more than a prelimary stage yet. There is no standardized

testing procedure. There are many different failure criteria

but none of them can be judged as true or false because of

the lack of reliable data.

On the other hand, mixed mode fracture is of great

practical intrerest as almost no real structure is so simple

that a crack is subjected to pure opening mode. Mixed mode

loading occurs at curved and inclined cracks, branched

cracks, welded or glued joints, and in many other cases.

This paper starts with a literature review of mixed mode .L

fracture mechanics with three points of interest: mixed mode

specimens, fracture criteria, and earlier experimental work.

As the values for mechanical properties of plexiglas found

in literature differed considerably, testing of these

properties was done. A series of tests with CT specimens {l}

was conducted to find olt the dependancy of the critical

stress intensity Kk on varying .tress intensity rates. .

Finally, mixed mode experiments with the compact tension

shear (CTS) specimen proposed by Richard {2-8) were

performed.

." r ."
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11 Notation

M~any researchers used the index m KO Al/ to

character ize mixed mode problems. But for pure mode 11 (Kim-

0) this index is infinity and therefore no diagram over the

complete mixed mode range from pure mode I to pure mode 11

can be drawn.

Another index often used is p .arctan(K,/Ku) where -

900 for mode I and - 0 for mode 11. This index is highly

functional for a large panel specimen with an angled crack

(see next chapter) as P is equal to the inclination angle of

the crack, but it has no physical meaning in other

specimens.

Sh ih (91 i ntroduced the i ndex M (2/rr)arctan (K, /Kv) in

his paper. This index never got attention by other

researchers.

Hence in this paper the index n K11/(KI +K1  is used

foaratrmid mode pro to. u1 oforr mode II an(sKhrfoe eayt use

which also is used by Richard M8. This index goes from 0

for thio de x I s to Ifrnodety and therefore odigasy oe Use....

The indices and m can easily be converted into n by lhe

formulas

n = 
( 2 )

cosp + sinp

Table I gives the calculated relations.

the rack bu it as o phsicl menin in the

specimens

Shih{9}intrducd te inex t = 2/ 0artan({/K) i
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III Literature Review

The following literature review consists of the three

parts mixed mode specimens, fracture criteria, and earlier

experimental work. From this review a plan of investigation

is concluded.

°I

1. Mixed Mode Specimens

To date, there is no standadized specimen for mixed mode

experiments. During the literature review, 10 different

specimens of general use were found which will be discussed

briefly. These specimens are (see figure 1)

Sl Panel with an angled center crack under tension (ACCT),

sometimes with notch (ACNT).

S2 Panel with a single angled edge crack under tension

(SAECT)

S3 Panel with a curvilinear center crack under tension

(CCCT)

S4 Panel with a center crack under biaxial tension (CCBT)

S5 Single edge cracked specimen under 3-point bending

(SEC3B)

S6 Single edge cracked specimen under 4-point bending

(SE C4B)

S7 Tube under torsion with an oblique crack

S8 Brazilian disk (B)

S9 Specimen proposed by Banks-Sills

SlO Compact tension shear specimen (CTS)
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Beside these, spherical shells under pressure {10,11} and "

X-, H-, and T-shaped specimens were used {121. The

abbreviations in parentheses are used in the following.

As with the most often used ACCT specimen no pure-mode IIp. .. ,
condition can be acieved, the following specimens were

employed for mode II testing

$11 Compact shear specimen (CS) Rh

S12 Inplane shear specimen (IPS)

These specimens will be discussed briefly as well.

The panel with an angled crack under uniaxial tenstion

(figure la) is the most often used specimen {13-23}, but

there are some variations: Erdogan and Sih {13} used a

large plate (a/b 0.2) subjected to "uniform tension at -

infitnity" and gave for that the stress-intensity factors

KI = d'/asin2p, KII =V isin cosp (3)

which are used by other resesarchers as well.

Shah (181 and Wilson {23} used a narrow panel (a/b = 0.5)

with only one loading hole on each end. The stress intentsity

factors for this configuration ae not explicitly give,, but

it is obvious that they are different from those of the

large panel. Wu et al. (34,351 used a large panel (a/b -

0.17) with an angled elliptic notch loaded by three pins on

each side. Many researcher do not state at all which kind of

-; ACCT specimen they used.

The obvious problem is that the results cannot be

• compared simply by the crack angle as the mixed mode ratio n

.
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is different. Equation (2) is strictly valid only for an W--

infinite panel loaded at infinity.

The biggest limitation of this specimen is that no pure * 4

mode II condition can be achieved. Therefore researcher K!J

could not perform experiments over the complete mixed mode

range or they had to use another specimen for mode II

experiments. The loads increase considerably for decreasing ,-

angle and in some cases the specimens broke in the loading

holes for small angles {21).

Another problem is the fatigue precracking as the

application of the load in testing direction would result in

curved cracks which are of no use. Several researchers

prevented the problem by using only thin machined slits

[21,25,331 or by introducing the crack with a razor blade

{151 which is possible in the case of PMA. If fatiguing is

necessary as in the case of steel or

aluminum alloys, the following procedure has to be done

(12}: A central not angled notch is machined in a larger

plate. Then this plate is precracked in the usual way. The

final specimen is cut out of this lager plate afterwards, as

shown in figure 2. This procedure wastes a lot of time and

material.

The plate with an angled edge crack subjected to uniaxial

tension (SAECT) (figure lb) is used less often [12,36,37}.

The problems in production and application of this specimen

are similar to those just stated for the ACCT specimen.

Hussain et al. (381 suggested a plate with a curvilinear
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central crack subjected to uniaxial tension (figure Ic) for

mixed mode and mode II testing and performed some mode II

experiments. The specimen did not get much attention as it

is quite difficult to produce a curvilinear crack. The mode

II conditon is at rL 77.0 ° (not at 79.Sas stated). A pure

mode I condition cannot be achieved as K, gets zero at-n "

137.5 and there is K,< 0.

The cracked plate under biaxial tension (figure ld) is

used by several workers {25,39-41). There are some

variations: Some used a straight crack and just changed the

- ratio ord',/ (39,40}, others rotated the crack [25} and

Radon et al. [41) used curved cracks. A testing machine

suitable to produce biaxial loading is necessary. Therefore ..-.

the effort in machinery is higher than for those specimens

which can be tested in uniaxial tension.

The tube under torsion with an oblique crack (figure le)

got some attention {11,13, but it is not very easy to

handle. Also, not every material is available as tube

material.

The Thr'e- or four-point bend specimens have some

advantages: They are easy to produce and fatigue. They can

be tested from pure mode I to pure mode I, although a pure

mode II condition may only be achieved with a notch, as

pointed out by Richard {42). The bend specimens got some

attention in experimental work {37,43,44).

."The Brazilian disk specimen which also can cover the

complete range from mode I to mode II was used by several

. .. . . -,

- . - - 4 5 . . . . . * S .'

".". " " ".". -5." "- .". . "*. , '-. ".."" " . . ."".. . .". .".. . . . .". ." .S..'.,.. w . . . . .. "_, _,_.s+'-'+,+'' .:- t r
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researchers (45,46). As the crack is subjected to

compression in this specimen, friction between the crack

flanks may occur {42). The fracture mechanism for a crack

under compression may be different from that under tension

{47). Hence the results between tension specimens and the

BD specimens may not be comparable;

Banks-Sills et al. {50) recently proposed a new specimen

for mode II dominant mixed mode experiments. This specimen

is not suitable for mode II experiments. No experiments with

this specimen have been reported yet.

The CTS specimen proposed by Richard [2-8} is similar to

the Banks-Sills specimen. But instead of gluing the specimen

to the grips, Richard uses a statically determinant

connection by means of pins. This is easier to handle in

practical application. The CTS specimen can be used from

pure mode I to pure mode II. Richard et al. {42) claim that

the CTS specimen is superior to the Banks-Sills specimen and

all other specimens in mode II testing. A problem with the

CTS specimen is that the influence of geometrical deviations

which are inevitable in machining the specimcns is not known

yet. No other experiments than those performed by Richard

himself are reported in literature so that the basis for r I

direct comparison is tiny.

The K,,, values which are necessary to confirm the

S .. different mixed mode fracture criteria are evaluated with

two different mode II specimens, the compact shear (CS)

specimen (49) and the inplane shear (IPS) specimen. Although

................
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Chrisholm and Jones {49) claim to achieve virtually pure

mode II condition at the crack tip of the CS specimen, later

researchers got different results: Riddle (50,51} found that

K, is much larger than anticipated and that already small

variations in the boundary conditions change the ratio KlI/K,

extremely. And Richard et al. {42) came to the conclusion

that "this specimen is unsuitable for the evaluation of K'.

The discussion about this specimen is not settled yet. A new

FEM calculation by Elenz {52) shows that the state of stress

at the crack tip is essentially mode II. The CS specimen

was used by {21} in their experimental work.

The inplane shear specimen did not get that much

theoretical attention. It was used by (13,21) for mode II -

testing, but the introduction of the forces imposes some

uncertainties.

In general, it is very difficult to achieve pure mode II

condition. Paris and Sih {53} found that only internal or

very deep external cracks show significant mode II

displacements. Several researchers {9,43,51 found in

numerical analyses that the plastic zone iVncrp;.Pns with

increasing K11. Beside some other problems this imposes that

the thickness requirement for mode II specimens may be ; j'

greater than that for mode I specimens (54}. A further

discussion of the problems and some other mode II specimens

are found in {42}. 1-'

The question remains what the influence is on the value

of K11C if the state of stress is not pure mode II but

3*.
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slightly mixed mode. If Kj,,is very sensitive to small

changes in the loading condition, the error may be high. It

seems though that Kgc is not that sensitive, but a final

answer cannot be given with the momentary knowledge.

2. Fracture Criteria

The purpose of the mixed mode frature criteria is to

relate the onset of crack growth under mixed mode loading to

that under mode I loading. Two principally different groups

of fracture criteria can be distinguished: Those which are

based on some theoretical or physical considerations and

those which are evaluated empirically by a best fit to

experimental data.

In all the criteria of the first group, the critical

stress intensity K , for mode I is set as standard value. The

most interesting case therefore is what the criteria predict

for pure mode It. The predicted ratio Kk/Kc and also the

predicted angle of fracture initiation in mode II was

.alculated for different criteri 113,16,17,38,55-65} and is

given in table 16. Some of the criteria are sensitive to

the Poisson ratio. In this case V 0 0.36 was used which is

found for PMMA.

Although Erdogan and Sih {13} and Nuismer (551 used

different approaches in developping their criteria, the

prediction of both criteria is the same for the fracture

initiation as well as for the fracture angle. Another well
I[
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established criterion is Sih's strain energy density
{16,17,59}. The predictions of this criterion

functiont

depend on the Poisson ratio. While the difference to the

other two criteria is within 10% for a Poisson ratro aroundother-

0.3, the predictions are very different for extreme values

of V. Therefore, experiments with materials with an extreme

Poisson ratio are best to prove the validity of this

cr1iterion.

Many criteria {13,17,55,59,66} base on the assumption

that fracture is a local phenomen and that hence the stress

distribution in the vicinity of the crack tip can be

described just by the singular terms of the William's stress

funtion (67}. For a definition of the stresses around the

crack rip see figure 3.

Inspired by a paper of Cotterell {681, Williams and Ewing

(151 pointed out that the stress dparallel to the crack tip

(see figure 3) may not be neglegible. Hence they added the

first nonsingular term of the William's stress function {67}

in their analysis. Later Eftis, Subromanian and Liebowitz

{69,701 confirmed this al;pioach. Severg2 author- {15,71-73}

based their fracture criteria on this enlarged function. The

problem is that all these criteria cannot be described in

terms of K, and K, only, but need an additional parameter.

This parameter must be determined experimentally which

usually is done in a way that the resulting function gives

the best fit to the experimental data. As the calculation of

'S1"S/is not possible without knowing this parameter, these
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,criteria are not listed in table 2.

Most criteria are for brittle fracture. But there are

also four criteria that take plastic deformations into

account: the criterion by Shih (9), the crack separation

energy rate criterion (43,73), the T-criterion (31-33,74),

and the J-integral [63-65). It is especially interesting

that the T-citerion predicts for pure mode II an angle of

fracture initiation of about -97 dewreeo while the J-intgral

predicts 0 degree which are extreme values.

A second group of fracture criteria are the empirical

criteria. They are evaluated as best fit to the

experimental data. Normally they require the knowlegde of

K.. The most general form of them is

,. [K ]U[ ]..

Awaji and Sato (46) found u v - 1.6 for graphite and

plaster and u v - 2 for marble. Shah {18) got u - v - 1

for steel which was confirmed by Chiu and Liu {39) for

aluminum and was found by Leicester {75) for wood. Wu {76)

got u - 1 and v - 2 for wood and fiberglass - reinforced " -

plastics which later was found by Richard {4,81 for PMMA.

Lee and Advani {77) confirmed these exponents in an analysis

based on the Griffith theory {78).

The mixed mode problem is dealt with in official

4* regulations too (79,80}. The ASME Boiler and Vessel Code
---

U.* {79) suggests to project the inclined crack in the direction

of the maximum stress and subject then the projected crack

. .". 

" 
. . .
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to mode I loading. The fracture criterion isF.

K IC r (asin )()"'-

After some algebraic transformations (see appendix 1), this

equation becomes

K 1.5

SK",K I  KI -."

+ i

. This criterion is dicussed in several papers {8,57,81). As

can be seen in figures 4 to 6 in {57}, the ASME criterion

makes in some cases prediction of higher fracture loads than

other criteria, especially in the case of pure shear. But ""

this does not mean that the ASME criterion is unsafe, as

this is just a relative difference and the other criteria

are not convincingly verified by experiments either.

This short review of the mixed mode fracture criteria is

far from being exhaustive. Already in 1977, Gilles {82}

rep,, ted of 35 different mixed mode fracture criteria. This

paper also is mainly restricted to homogeneous materials

subjected to tension. For orthotropic materials (wood,

composite materials) or for cracks under compression, other

criteria can be found in literature. For a further

discussion of fracture criteria and also comparison between

them, the reader is referred to (8,19,57,58,81,83-85}.

.................................

-.. . . . . . .
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3. Earlier Experimental Work •

There is no standardized testing procedure for mixed mode

testing. Most researchers took ASTM E399 (1) as a guideline.

But as already mentioned, the thickness requirement stated

there may not ensure linear elastic conditions as the

plastic zone increases in mixed mode loading. Pook (141

introduced the criterion that the net section stress at

fracture initiation should be less than 80% of the yield

strength of the material to ensure brittle fracture.

Many researchers already conducted mixed mode

experiments. Most research was done with PMMA, but steel

and aluminum alloys got considerable attention too.

The problems and results with PMMA will be discussed

later, now the other materials will be considered. Tables 3

to -5 give the results found in literature for steel

{18,19,25,33,43), aluminum alloys (1.2,14,19,20,23,28,33,86),

and several other materials {4,27,29,31,33,46). As can be

seen in column 3 of each table, most researcher used the

ACCT specimen. Column 5 gives the range of the experiments

by the mixed mode index n. Many researchers did not test the

complete range from mode I to mode II. Another important -

information is, how many specimens were tested, which is

given in column 6. It is felt that that 3 or 4 specimens

are not enough to make any conclusion about the tested V

material. Columns 7 to 9 finally give KiC,Kik, and Kk/K. as

far as they are stated in the cited papers. A comparison of

the experimentally found N,/K,, with those predicted by the

° , -7,
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different fracture criteria (table 2) reveals that only the.

J-integral 163-65} and the criter'on by Irwin {61,62}

predict K,' K and are therefore close to the experimental

results. Most researchers who perfomed these experiments

therefore used empirical fracture criteria.

The angle of fracture initiation predicted by the various

criteria differ considerably. Hence experimental

verification is necessary. An interesting experiment to

check the validity of Sih's strain energy density criterion

[16,17,59} was performed by Finnie and Weiss [49}. They used

cross-rolled beryllium N = 0.0) and found that the measured

fracture angle is much higher than predicted by the strain

energy density criterion but is close to the prediction of _

the Erdogan and Sih criterion (13). Awaji and Sato {46}

measured the fracture angle in mode II for graphite SA '

N - 0.07) and graphite 7477 (V = 0.20) and found it to be

around 67 degrees in both cases. All these experiments give

evidence that the angle of fracture initiation is

essentially independent of the Poisson ratio.

Although the J-integral and the T-cri-terion predict

totally different fracture angles for mode II, both are

verified experimentally. Riddle {50) performed experiments

with aluminum and found the angle to be around 0 degree,

while Theocaris (31) used Polycarbonate of Bisphenol A

(PCBA) and found "angles absolutely greater than 90".

Plexiglas got the largest attention in mixed mode

fracture research [4,1,13,15,21,25-27,33,34,37,40,41,44).
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The results are given in table 6. In addition to the '

information included in the other tables, this table states

the way in which the crack was produced (column 4), the

displacement rate used for testing (column 5), and whether

slow crack growth was reported in the paper (column 6). Most

researchers found KlWXk.to be around 0.9 which is close to

the values predicted by several fracture criteria (table 2).

This is not that surprising as most of the fracture criteria

were constructed to explain the behavior of PMMA.

As it was planned to perform the new experiments with

PMMA too, this material got further attention in the

literature review.

Many mixed mode experiments-require the knowledge of the 5
Poisson ratio. In addition, it is usefull to know the

modulus of elasiticity and the strength of the material. The

values found in literature {4,7,11,33,37,87-94] are given in

table 7. The range for the modulus of elasticity is from

2.0 to 5.0 GPa and for the Poisson ratio values between 0.30

and 0.43 were stated. Often it was not very clear whether

the stated value was obtained experimentally or whether it

was chosen as the best fit to the respective theory.

The modulus of elasticity is dependent on the straining

rate {951, but most sources do not state this rate. Williams

195) gives the equation

E CO.655 + 2.T4(i)O'1O93Gpa (7)

where is the straining rate with theunit I/s. Williams

= ..

.* ' ." " • .. °' • - , •, / ° -.-. . .
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applied this formula for e 5xlO- 1/s to 102 I/s. He -

therefore got values for E from 1.6 to 5.2 GPa.

The fracture toughness testing of PMMA involves some

problems. In the following, those found in the literature

are stated and discussed:

1. Most testing machines are designed for metals. Therefore,

the lowest load range is around 5000 N. Even with a high

accurancy of 0.1%, the error because of the small fracture

loads for PMMA may be high. This problem is reported by

Phadke et al. {21). They used a load range of 500 kg (4900

N) with a least count of 0.5 kg (4.9 N). For the smallest

reported fracture load of 7.5 kg (73.6 N), the error is

6. 7%.

It is also not clear whether ASTM E399 {I} is applicable

to PMMA or not, as this norm is designed for metallic

materials. Despite this uncertainty, that standard was

applied in many papers, as no other standard is known.

2. Many researchers consider PMMA as ideal isotropic and

brittle, while other scientists proved that socalled crazes

establish at the crack tio {89,96-99}. The crack tip is

supposed to have atomar dimensions and the fracture process

is a molecular process. As PMMA has large molecular chains,

the orientation of these chains influences the state of

stress in a way that it is inhomogeneous in molecular

dimensions. Crazes only develop in an inhomogeneous state of if

- "stress which shows that this material is not that ideal

isotropic in a microscopic range. Furthermore, crazes are
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kind of plastic deformations which may cause some error in

applying LEFM theories.

It was suggestd to anneal the the specimens to reduce the

crazes {100} which was done by {34). In addition, Mai {100}

suggested to minimize the occurence of crazes "by a coating

of silicone oil onto the specimen surfaces". The influence

of this coating is not readily understood and no other

reference to it was found in literature.

3. The fracture toughness of PtiMA depends on the

temperature, the relative humidity of the air or the water

content of the material respectively, and the presence of

chemicals. Therefore, some researchers stored the specimens

under specific conditions for-1500 hours (94), or did the _

testing in climatized rooms (1001. But most researchers did

not have the facilities and did tne testing under whatever

conditions there were in their laboratories.

4. As was discussed in several papers {95,101-104}, the

fracture toughness of plexiglas depends on the crack

propagation speed. A group of researchers {95,102} state

that there exists a "unique relationship between critical

stress intensity factor and crack speed which is independent

of the test piece geometry used" 195}, while Cotterell (101}

claims that "although the fracture toughness does increase

with velocity of fracture, ... it is not a function of

veiocity". The results of the first group show a high data

scatter for crack speeds greater than 1 mm/s which is

probably due to an inaccurate method of determining the

4 Ir
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crack velocity at higher speeds. F.

5. As Marshall et al. (103) put it, "the most common mistake

is the evaluation of K at instability by using the length

of the original notch when in fact the crack length after

the slow growth regime can be considerably greater". For

slow crack growth, PMMA shows a rough surface with furrows

in direction of the crack growth, sometimes called "river

markings" (94). Fast fracture produces a smooth,

featureless, mirror-like ..fracture surface (94}. The

transition is marked by a sharp line (105}.

The problem lies in the relation of the slow crack growth

to the load - displacement curve. It is not clear whether

the slow crack growth really does occur before reaching the _ I
peak load, or whether the crack just starts slow at peak

load. Beside that, a correction for slow crack growth is

only possible for pure mode I. Under mixed mode and mode II

loading, the crack does not propagate selfsimilar, and after

initiation the K, and K11 factors are unknown.

There is considerable amount of mixed mode fracture

research done in East Eurcoe {66,106), Japan (107-109}, and

China {112,113). Abstracts of further Chinese papers can be

found in {112,113). All these works could not be considered

in this paper because the respective journals were not

available.

• '".I
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4. Summary

1. The CTS specimen is the best specimen for mixed mode

experiments found in literature. It can be used for the .A

complete mixed mode range from mode I to mode II and is

easy to handle.

2. There are innumerable fracture criteria in literature

which are partly contradicting.

3. A considerable amount of experimental mixed mode work was

found in literature. The problem is not that there are no

experimental results available, but that the available

results are not reliable.

4'. The mechanical properties for plexiglas stated in the _.-

literature differ considerably. Especially the influence of

the straining rate on the modulus of elasticity is not

clearly understood.

5. The-critical stress intensity of plexiglas depends on the

crack propagation speed.

V."
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5. Plan of Investigation r

From these findings in the literature review, it was

decided to do the following experimental work with PM A:

1. Tests with tensile specimens at different straining

rates. Specific interest lies on the Poisson ratio and the

dependence of the modulus of elasticity on the straining

rate.

2. Tests with CT specimens at different loading rates. As it

takes a high effort to measure the crack propagation speed

accurately, it is tried to find a relation between the -

stress intensity rate K and the critical stress intensity

K,:.

3. Tests with CTS specimens in mode I at different loading

rates and comparison of these results with those found with

the CT specimens.

4. Tests with CTS specimens under mixed mode loading. If the

assumed dependency of the fracture toughness on the stress -

intensity rate K is proved in tests 2 and 3, K will be kept

constant for all mixed mode loading conditions.

"°.2
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IV Experimental Procedure

1. M•aterial

The material used for the tests was Plexiglas G Acrylic

Safety Glazing, produced by Rohm and Haas, Philadelphia

(PA). All the specimens were cut out of a single half inch

thick plate. As the plate was cast, the thickness varied

considerably.

2. Testing Procedure

Table 8 gives the dimensions of the tensile specimens.

All specimens were instrumented with an extensometer between -

point 2 and 3 to measure the elongation. Specimens TI and T3

were additionally instrumented with a slightly modified

extensometer to measure the contraction of the specimen for

the e'valuation of the Poisson ratio. The results were

recorded on a X - Y plotter.

For the measurement of the modulus of elasticity and the

Poisson ratio, the specimens were stressed to a level of 11

MPa and then unloaded with a specific displacement rate

(table 9). The time of the unloading process was measured to

calculate the straining rate. Then the specimens were

loaded until they ruptured. The location of frature was

noted.

The 6 CT specimens were prepared and tested in the

following way: A razor blade was forced into the machined
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chevron notch. Then the specimens were fatigue precracked at'

5 Hz with a controlled stroke amplitude of 0.15 mm and an

initial minimum load of about 65 N. The final crack length

typically was reached after 12000 cycles. The crack front

was straight. The dimensions of the CT specimens are given

in table 10. The specimens were instrumented with a clip LI
gage according to ASTJI E399 {1} and a load -COD curve was

plotted on a X Y plotter.

The machine (tTS) in use for the experiments had as

lowest load range 1000 lbf with a least count of 1 lbf. In

previous tests with this machine it was found that the load

control in the lowest range does not work properly. n
Therefore, displacement control had to be used for all

tests. Displacement control was used by most other

researchers too {15,21,26,34,37}.

The testing was done with speeds between 5.1 and 63.5

mm/min. In displacement control, the displacement recorded

on the plot is proportional to the time. The time until

fracture initiation found there and the critical stress LI

ntensity Kkwas used to calculate the stress intensity rate

K. The exact way of the calculation can be found in appendix

2.

As all the machines and gages in use were in US customary

units, the CTS specimens and the grips were slightly

modified to meet these units. The used dimensions are shown I-

in figures 4 and 5.

Altogether, 16 CTS specimens were produced and tested. A
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razor blade was forced into the machined chevron notch to..

start the crack. Then the specimens were fatigue precracked

initial minimum load of about 125 N. The specimens were

loaded through the holes at the side of the notch and not

through the middle holes as suggested by Richard (81. The

crack length a -1.5-in which equals a/W -0.5 was typically

reached after 10000 cycles. Two specimens were further

fatigued to a/W 1 0.55 and two others to a/W - 0.65. The

crack front was straight, but the crack tip was only by

chance exactly on the center line of the specimen. Most

samples showed deviations of up to 0.1 mm, some up to 0.2

mm. The worst case was specimen CTSI with 1.5 mm deviation _

(3.8%). In addition, the crack of this specimen was slanted

in through thickness direction by about 4 degrees.

The testing of these specimens under mixed mode

conditions imposes some problems. Richard {8) suggests in

accordance with ASTM E399 {1} to use load control and choose

such that the stress intensity rate K in mode I is between

0.55 and and 2.75 Mpa'm per second. Richard himself used K -

3.3 MPavm/s. He further suggests that the loading rate F

used for mode I should be contained for mode II and mixed

mode loading. The problem now is that K changes for F -

constant at different angles. It was shown by earlier works

(95,101,102) that the fracture toughness of PM$A is rate

sensitive. Therefore it is felt that the suggested

procedure gives no clear distinction between the influences

. . . . . - - - - - - o - '' "
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of mixed mode loading and those of the rate sensitivity.

There are three principally different ways of loading the

specimens under different mixed mode conditions:

1. displacement rate d = constant

2. loading rate F " constant

3. stress intensity rate K - constant

Naturally, there are arbitrarily many ways of loading

without any constant magnitude. But these do not seem

logical.

Most researchers did their mixed mode testing at a

constant displacement rate [21,25,26,34,37}. As they used

many different specimens, the influence of the changing

stress intensity rate is unknown. But for a CTS specimen,

the use of a constant displacement rate is questionable, as

in this case the stress intensity rate under mode II loading

is only 29% and 17% of that under mode I loading for a/W -

0.5 and 0.7 respectively. This can be seen in table 11. The

way how these figures were calculated is given in appendix

2.

Richard [8} used for his experiments a constant loading

rate. This is already better, but the stress intensity rate

under mode II loading is still only 28% of that under mode I

loading for a/W - 0.7, as can be seen in table 12.

Hence in the new experiments it was tried to keep the

stress intensity rate K constant. The problem is that the

stress intensity rate is no property of the testing machine

as it is in the cases of the displacement or loading rate.

-..". :: *. " * *. . * --. ":1
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To relate the mixed mode and mode II stress intensity rate

to that of mode I, a fracture criterion is necessary.

Because of its simplicity and its good agreement to previous .

results, the fracture criterion (8,76,77)

K 
2K

1 1 
I 2

"-'

was used where it was supposed that K1 = K,€ . Then the

necessary displacement rate was calculated as stated in

appendix 2. The results are shown in table 13.

The constant stress intensity rate condition is equal to

the condition of constant time of loading which was used by

The tests were done with displacement control. A load -

LLD curve was plotted. This is sufficient in the case of

plexiglas which has such a low modulus of elasticity (3 GPa

versus 210 GPa) that all deformations of the machine and the

grips can be neglected.

After the testing, pictures of the crack tip with

magnification 50x were taken to measure the angle of crack

initiation. In addition, the fracture surface was examined.

The calculation of the stress intensities K, and K, was

done using the calibration factors given by Richard {8}, as

stated in appendix 3.

.'...-. ..
.- a .. * . ,
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V Results and Discussion

1. Mechanical Properties'

The plots for the Poisson ratio and the modulus of

elasticity were straight. For the calculation of the modulus

of elasticity, the average of the cross - section area at

point 2 and 3 was used. In addition to the specific tests

of the modulus of elasticity, this property was evaluated

out of the plots of the rupture tests. The results agree

with a deviation of 3% or less.

The specimens broke at different locations and this may

be because of stress concentrations due to machining. It was

not possible to get consistent values for the ultimate _ _

stress d#. Hence the yield strength d., was evaluated which

shows little data scatter. The results are shown in table

14. The average of the Poisson ratio was calculated to be

0.36.

A comparison with table 7 shows that the new results

agree well to those stated in the literature. The new

results show slightly increasing values for the properties

with increasing straining rate. The growth is about 11% in E

and d, for an eight times higher strain rate, as shown in

figure 6. In many cases, this might not be neglegible. Hence

the reported increase of E with increasing strain rate could

be confirmed.

Equation (7) given by Williams {95) yields much lower

value's for E than found in the new experiments, but this is

7,
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due to the definition. Williams defined the modulus of

elasticity as the secant between the origin and the point of

3.5% strain, while usually the initial slope of the

straining curve is used. Equation (7) predicts a 15% N..

increase in E for the range covered by the new experiments.

2. Fracture Toughness at Varying Stress Intensity Rates

The load - COD plots for the CT specimens were almost

linear and all did fulfill the requirements of ASTM E399.

Preinstability crack growth was not observed, but up to the

stress intensity rate K u 2.15 MPaV'm/s, the crack

propagation speed was low (range of millimeters per second). _ .-

The fracture surface therefore showed the river markings

which are typical for low crack speeds £941. Only specimen

CT6 (K - 3.78 MPam-/s) showed the smooth fast-fracture

surface.

Table 15 shows the results for the CT specimens. The

results are consistent with Marshall et al. £1031 who gave a

KIC of about 1.2 MPaIm for crack speeds in the range of

millimeter per second.

Then 4 CTS specimens were tested under mode I loading at F

different stress intensity rates. Again, the load -

displacement curves were almost linear and met the

requirements of ASTM E399. Only specimen CTS7 (K " 0.23

MPam/s) showed the rough slow - fracture surface, the other

specimens had a smooth fracture surface.
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The results are shown in table 16. All Kc values from IF

tests with CTS specimens are significantly greater than

those from CT specimens at the same stress intensity rate K.

This can be seen in figure 7. Also the change from the rough

to the smooth fracture surface happened at a much lower-

for the CTS specimens than for the CT specimens. The reason

for that behavior is not clearly understood. It might be

that the fracture process happens faster in a CTS specimen

as this specimen is stiffer and more elastic energy is

stored at the onset of fracture. The crack separation rate

for the two specimens might be different. Chiang and Miller

(43} calculated the crack separation energy rate for*ACCT

and SENB specimens and found it to be different. They -

attributed the difference to the effect of hydrostatic

pressure which influences the plastic zone around the crack

tip. Whatever the reason may be, it can be concluded that

there is no unique relationship between the stress intensity

rate and the critical stress intensity.

As the crack speed was not measured in the new

experiments, the statement that the relation between the

crack speed and the critical stress intensity is unique and

independent of the specimen geometry (951 could not be r
confirmed. But an analysis of the slope of the test plot

after crack initiation showed that a higher K,, was

correlated to a steeper falling curve which means a faster

crack speed.

Although the values for the critical stress intensity
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obtained with CTS specimens are generally higher than those

found with CT specimens, they are still within the range

found in literature. The question remains why Richard {4,81%
got a 30% higher value with the same specimen for the same

material.

The first reason for this difference is that he used a

S much higher stress intensity rate. A second reason may be

that Richard had curved crack fronts, as can be seen in

figures 86 and 87 in {8}. The curved crack front is due to

the higher frequency used for fatigue precracking and was

found in earlier tests by Pouiose too. The higher frequency

causes a heating of the specimen which is probably

responsible for the effect. As-was found by Towers and Smith-

{1141 in a numerical analysis of the CT specimen, a curved

crack front which still meets ASTM E399 requirements can

have an up to 28% higher fracture l-oad than an equivalent

straight crack front.

In summary it can be said that the critcal stress

intensity of PMMA increases slightly with increasing stress

inteisity rate. For small variations of the stress intensity

rate, the variation of the critical stress intensity is not

outstanding of natural data scatter, but a change of Kby a

factor 2 or more is not neglegible.

3. Fracture Toughness under Mixed Mode Loading

Beside two specimens in mode I which were already

... . -.. .i - . . . . . . . . . . .. .r...T- , -- . r r : : ,- - T . . £-
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mentioned in the previous chapter, all specimens were loaded -

at a stress intensity rate of 1.0 MPa1m/s with a maximum

deviation of 15%, as can be seen in table 17. The deviations

are due to inaccurancy in the calculation of the _

displacement rate and scatter of the stiffness in different

specimens.

Out of the 16 tested specimens, three (CTS1, CTS12,

CTSl3) had to be rejected. All of them showed the same

effect: The crack growth started slowly at one side of the

crack and moved up to 3 mm before the instability condition -

was reaohed. The fracture surface was slanted in thickness

direction. In all cases, some geometrical deviatlons could

be found. As two of the rejected specimens were tested under _

mode II loading, it seems that this condition is especially

sensitive to deviations of the specimen geomety. "1)>'2

The fracture surface of all other specimens was smooth

(mirror surface) and showed none or. very little (< 0.5 mm)

slow crack growth which then was neglected. The results of

the mixed mode experiments are given in table 18.

K,, was calculated as the average of the results of

specimens CTS2, CTS9, and CTSII and had the value 1.26

MPa /m. The evaluatitn of Kn¢ is a little vague. First of all, '

out of the 5 tested specimens 2 had to be rejected. The

result of the remaining 3 is not that consistent either. The

mean value of the two specimens with a/W = 0.5 is 1.39 MPaVrm-

which yields K./K, - 1.10. Taking the specimen with a/W

0.65 in account, the average of the three specimens is K11 -

.
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1.35 MPa'm/which gives KI,/KI1 -1.07. In any case, Kk/K,> 1.

This is much more than the values found in literature for

PMMA. As already mentioned, most researchers found Kik/K cto

be around 0.9 (table 6). Only Phadke et al. {21} found KI/KJC ir

to be up to 1.0, depending on which mode II specimen they

used for the evaluation of KI. But the new results

correlate well to results found for steels (table 3),

aluminum alloys (table 4) and different other materials

(table 5). For many materials K,/Kc around 1.1 was found.

The reason for this discrepancy between the results for

PMA and other materials might be that most researchers

neglected the influence of the stress intensity rate on the

critical stress intensity of PMMA. Richard (4,8) found K11/K1 -

- 0.93, but as pointed out ealier, his stress intensity rate

for mode II was just about 30% of that for mode I. Assuming

that the dependancy of the critical stress intensity on the

stress'intensity rate is the same for mode 11 as it is for

mode I and also assuming that the dependancy can be

described by a line in the semilog - plot figure 7, the [

3tated value for Kli is about 7% too low. A correction for

this would result in KII/KC of about 1.

A problem that could have influenced the new results is

crack closure. Especially for a/W < 0.55, there is some

negative stress intensity K for C= 90 (see figure 5 in {2}

or figure 78 in {8}). This might have had an influence on

the results with a/W - 0.5.

For a/W -0.65 and = 900, K, is virtually zero. But as

. -]
. . . .::



-:- ... PAGE 32

the tested specimens had an extremely long fatigue crack

(16.5 mm), even a very small negative K, may influence the

- results. This is confirmed by Biuerle (1151 who made a new

FEM analysis of the CTS specimen. Although he found for c c

90 KI to be almost zero at the crack tip, K, got

increasingly negative along the crack flanks. As the

surfaces of the fatigue crack are in touch with each other,

they get pressed together due to the negative K,, causing an

unknown error in the results. The crack closure problem may

be increased by the inevitable out of middle location of the

crack tip. It is therefore felt that a mode II specimen

should'have a small amount of positive K1 to reduce crack

closure and friction problems. This requirement is met by _

the modified CTS specimen {42,1161 (see figure 8).

As can be seen in figure 9, the mixed mode fracture

cr i ter ion

K2

- I  [KII 2

suggested by several authors [8,76,77) gives a good fit to

the experimental results. This criterion can be transformed

into {8)

S2[ K1 . +c1 K1 1) J

where Kv is the comparative stress intensity factor and 0(,=

(Kk/KQ). The safe- design condition is then

Kv<KI

A look at table 2 reveals that just the criterion by
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Irwin (61,62) and the J-integral [63-65) predict I 1

and therefore promise to give a reasonable fit to the data.

But as can be seen in figure 10, neither one provides a very a
good fit to the experimental data.

Another criterion of interest is the ASME Boiler and

Vessel Code (791 because of its simplicity. As can be seen

in figure 10, it gives a reasonable fit to the experimental

data up to n - 0.5 (p - 45)-. Beyond that, the predictions

are not accurate, but at least they are on the safe side.

In a K /Kjr - K./K,¢ plot, a vector

K2  24K + K en

K1
is defined as the distance of a certain point to the origin

of the coordinate system. This vector also can be used to

describe the behavior of a material over the mixed mode "..

ratio n. A fracture criterion Kz-Kilcf(n) with the safety

condition Kz < Kik can be evaluated. For the new Pu
experimental data, the function

f(n)= 1 + 2.934 n - 15.?0n2  24.81n 3 -11.97n 4

was found to give a reasonable fit , as can be seen in

figure 11. Although this kind of plot seems very unusual,

it has some advantages, especially that the fracture angle

can be drawn in the same plot or at least with the same x -

axis so that the relation between the critical stress

intensity and the frature angle is better visible.

* ." The angle of fracture initiation in mode II was found to

be - 70° . This confirms the criteria by Erdogan and Sih (13)

1-
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and Nuismer (55), while the other criteria make more or less

different predictions. The measured fracture angle with the

Erdogan and Sih criterion and the empirical criterion by

Richard {8} are shown in figure 12. The measured fracture

angles of beryllium (V - 0.0) {47) are given in the same

figure. It is remarkable that they are very close to the new

results despite the big difference in the Poisson ratio. It

seems that the angle of fracture initiation is independent

of the Poisson ratio.

N%'.

.
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Vt Conclusions r

1. The thickness of the CTS specimen should be symbolized by A
B and not by t, because t can easily be held for a symbol

for the time. 8 is used to describe the thickness of the CT

specimen {11, the CS specimen (49-511, and the new compact

shear (NCS) specimen (1171, and there is no reason why this

should be changed.

2. The testing of the specimens should be done in a way that

the comparative stress intensity rate Kv is constant for all

mixed mode conditions and not with a constant loading rate.

To calculate Kv, the criterion

2~~ -I j

as a first approximation is sufficient. Even if it turns out

that the implied assumption Kik = K,, is not accurate, the

difference in the stress intensity rate over the mixed mode

range will be much less than with 'just taking a constant

loading rate.

3. As there are some crack closure problems in pure mode II, -

the crack should be as short as possible. There should be

set not only a lower limit for the crack length (8) but also

an upper. In order to cut the length of the touching

surfaces, it has to be considered whether a straight through

notch should be used instead of a chevron notch. Maybe the

original CTS specimen should be replaced at all by the

modified CTS specimen (421 for mode II testing. The modified -,

CTS specimen has a slightly positive K, for c- 900(116].

-"
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4. More research is needed to find out the influences of

deviations of the specimen geometry. It is not enough just

to keep the machining tolerances, as the fatigue crack tends N e.-

to grow away from the center line. Relatively small

deviations already showed a significant effect.

5. Both the mechanical properties and the fracture toughness

of PMMA are slightly sensitive to the loading rate. For I

changes of more than factor 2 in the loading rate, the

deviations are not neglegible.

6. The fracture criterion

K .
LK + K

gives a good fit to the experimental found mixed mode

fracture initiation.

7. The ASME Boiler and Vessel Code gives a reasonable fit to

the experimental data up to a crack inclination of 450. The

predictions for steeper inclinations are not accurate but

they are on the safe side.

8. The criterion of maximum tangential stress proposed by

Erdogan and Sih gives the best fit to the experimentally

found angle of fracture initiation. It seems that this angle

is independent of the Poisson ratio.

. . . .. .

: [5..
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SK 1I K 1 1  
-

- p n= KK

9 0P 0.0 0.0 mode I

75 o.268 0.211

600 0.377 0-366

450 1.0 0.500 mixed
mode

300 1.732 0.634

150 3.732 0.789
00 CO 1.0 mode II

*Table 1 Relation between mi, and n

Poisson K mode II

ratio K - -

Erdogan and Sih [13] i 0.87 70.50

Nuismer [55] i 0.87 70.50

Hussain et al. [38] i 0.63 75.20

Ametoy et al. [56] i 0.81 770

Radaj and geib [57,58] i 1.32 990

Sih [16,17,59] 0.36 0.85 84.60

Di Leonardo [60] 0.36 o.85 "

Irwin [61,62] i 1.00

J - integral [63-65] i 1.00 00

legends i = independent -

s.: - : no prediction

-. Table 2 Prediction of different fracture criteria for

mode II



12 3 4 .5 6 7 8 9
K11

Material Spec T[*C]nmn nmax A K IC K 11  K

L% Ueda C25] M SM41 ACNT RT 0 (. ?

M SM41 CNBT RTO 0-5 8' - - -

Shah C18] H 4340 CCT RT 0 2 80.4 -

H 4340 Tube RT 1 2 - 88.3

H 4340 ACCT-2.40 0 0.79 8 45.7 49.7 1.11

K.Pluvinage C19] H 18MnMoV ACCT RT 0.46 0.63 3- - -

Chiang C43] H GC-4 SECB RT 0 0.66 8 49.6 - -

Theocaris C33] S - ACNT RTO0 0.92 110- - -

1) doubtful method of determining K11

Table 3 Mixed mode results for several steels

Legend to tables 3 to 5

column 2 M =mild steel

H =high strength steel

S= spring steel

column 3 specimens, see chapter 111 1.

column 4 RT =room temperature

column 6 A =number of the tested specimens

column 7 + 8 values in IVPar

= value found in a figure

-= not stated in the paper

A4
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1 2 3 4 5 6 7 8 9

Material Spec T('C] nmin nmax A Klc KIIc Ki c

* Tracy [28] 7075T6 ACCT RT 0 0.63 122- - -

" Boeing [86] 7J75T651 ACCT - 0 0.6 4 70.0 70.0 1.0

i[7075T7651 " RT 0 1 4 75.5 89.2 142Liu C20] ,-'

2024T3 lj RT 0 1 3 74.2 74.7 1.0-

.* Jodin [12] 2024 - - - 5 - - -

" Wilson [23] 7178T651 ACCT - 0 0.8' 14* - - -

Pook [14] DTD5050 ACNT - 0 0.63 11 31.5 - -

Pluvinage [19] AU4G ACCT RT 0 0.85 10 ":"

Theocaris [33] 57S ACNT RT 0 0.92 11- - -il

1) shear panel

* 2) with a CCT specimen, Klc = 89.2 and KIIc/KIc = 1.o
3) with a CCT specimen, Kc = 99.4 and Kilc/Klc = 0.75

legend see table 3

Table 4 Mixed mode results for several aluminum alloys r

F-

., '.:.>r

• . .. ,' ,,



1 2 3 4 5 6 7 8 9

Material Spec T[*] nin  nma A K K I..
mini Tn 1 1

Kordisch [27] Glass ACCT - 0 0.92' 1 - - -

PU ACCT- 0 0.85 2E- - -

Richard [4] Araldit B CTS RT 0 1 20 0.59 1.46 2.48

Theocaris [31] PCBA ACNT RT 0 0.92 110 7.0' -""

Theocaris [33] Bronze 1  ACNT RT 0 0.92 300 - ..-

Lemant E29] Zinc ACCT -196 0 0.63 8 - - -

Awaji and G"SA24 // BD RT 0 1 13 0.72 0.83 1.15
Sato E46] G SA24 BD RT 0 1 9 0.69 0.76 1.11

G 7477 BD RT 0 1 19 0.94 1.09 1.16

G SM1-24 BD RT 0 1 7 0.81 0.89 1.09

Plaster BD RT 0 1 7 0.13 0.15 1.14

Marble BD RT 0 1 10 0.93 1.05 1.13

1) calculated from given data

2) three different types of bronze

3) G = graphite

legend see table 3

Table 5 Mixed mode results for various materials

-' :-,::
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1. 2 3456 7 819 101
K

Reference Spec B d ninax A KI K KI c

Richard C4] CTS 20 F N 0 1 44 1.64 1.52 0.93

30

Ewing [Ii] - R , - - - 50 1.80 - -

Tube 6.3 - ' N 0 1 38' 1.12 1.0w 0.89

Erdogan ACCT 3.0 - - P 0 0.73 4.50.92 -
0.89

& Sih £13] IPS 3.0 - - 1 9 - 0.82

Williams [15] ACCT 3.2 R 5-0 Y 0 0.98* 15dh1.37 - -

5.0Phadke C21] CT 2 .8 'N 0.2 N 0 15 0.99 -cs 5.00.90

C S N 0.2 N 1 13 - 0.90 0.902.8
CSS 5.0 N 0.2 N 1 4 - 0.67

IPS 2.8 N 0.2 N 1 4 - 0.99

ACoT 2.5 N 0.4 N 0 0.54 9 0.98 -

Ueda C25] ACNT 4 N - - 0 0.85 24 -"

CNBT 4 N - - 0 0.85 18 -

Seidelmann C26] ACCT 3.0 F 0.1 3, 0 0.73 45'1.46 - -

Kordisch [27] ACCT - - - - 0 o. 98' 117' - 0.9

Theocaris [33] ACNT 1.5 N - - 0 0.92 110 - -

Wu [34] ACNT 3.2 N 1.3 N 0 0.98 60 - - -

Ewing [37] SAECT 3.0 R 5 - - - 10 - - -

SEC4B 6.0 R 5 - - - 10 - - -

Radon [40] CCBT 4.0 R " Y 0 23" 1.51 -

Leevers [41] CCBT - - - Y 0 4 1.87 - -

Raju [44] EC3B - - - - 1 2 - 1.36 -

Table 6 Mixed mode fracture data for PIMINIA stated in literature
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Footnotes to table 6 .

1) load control =4kN/s

2) spherical shells 2 178 - 270 mm under water pressure

3) constant time of loading 15 s

4) constant time of loading 75 s

5) loaded by running water

6) only 47 specimens evaluated for KI , KII because of I

preinstability crack growth

7) in table 1 of that paper, B =3mm is stated

8) the ligament in front of the crack tip was reduced to

2.5 mm. The results are probably not valid because of the

uncertain state of stress at the crack tip and possible

residual stresses due to grinding.

9) slow crack growth only in mode I

10) constant stress intensity rate K= 0.2 MPa iM/s

11) 6 specimens at p/py= 0, 17 at pxpy> 0

Legend to table 6

column 3 B = thickness of the specimen in Lmm]

column 4 introducing of the crack

F fatigue precracking

R = razor blade forced into the notch

N = machined notch
mm] ..

column = = displacement rate in
min,

column 6 did preinstability crack growtth occur? .,

N = no, Y = yes, P = in some specimens

colu-n 8 A= number of the tested specimens

- value found in a figure

-= not stated in the paper

... * . - - - - - - - - - - - - - - - -, .



Reference E v dult d0.2 t e r

[GPa] [MPa] [MPa" s]

Dubbel [87] 2.7 -3.7 - 50 -77 - - -

Encyclopedia [88] 2.6 -3.1 0.35 48- 76 - - -

Mascia [89] 3.12 0.33 - - 00 -

Ewing [1i] - 0.35 .- . -

Richard [4] 0.30 -

Richard [7] 0.36 -

Ewing [37] 2.0 0.43 .. . . -

Buhelt [90] 3.41 0.33 - - 180 -

Preece [91] - 0.35-0.37 - -

Zimmermann [92] 5-0 0.35 - - - high

Kausch [93] 3.3 65 - - -

Leevers [94] 2.9 - 80 - - -

Rohm & Haas 2.90 0.35 72 - - -

Theocaris [33] 3.4 0.34 72.9 64.3 - -

Table 7 Mechanical properties of PMMA stated in literature

A
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7.3" (18 5.)-
"" &4 1" (104.1)

.s

. •.

is# 1" its (25.4) I

S1:2

width [mm] thickness rm3.
Spec

1 2 3 4 1 2 3 4

Ti 12.5 12.6 12.6 12.7 12.0 12.0 12.1 12.2

T2 12.5 12.6 12.5 12.7 12.1 12.1 12.0 11.9

73 12.7 12.8 12.9 13.0 12.1 12.1 12.0 11.9

T4, 12. 12.4 12.5 12.5 12.2 12.1 12.1 12.0

Table 8 Dimensions of the tensile specimens

a location of

Spec [fracture

T1 0.38 0.3 at 4

T2 0.76 0.6 at 4 F

T3 3.0 2.4 between 2 and 3

T4 1.5 1.2 between 3 and 4

Table 9 Testing conditions for the tensile specimens

* . * . . .. 1
'.. *. .



Spec W a a/WI B

[MM] [mm] [mm]

MT 28.2 0.555 12.0

CT2 25.1 0.495 11.7

CT3 508 24.9 0.490 11.7

*CT4 (20) 25.4 0.500 11.7

•~ ~ ~ 2 0")" .".o

CT5 25.1 0.495 11.7

CT6 31.0 0.610 11.7

Table 10 Dimensions of the CT specimens

a/W=0'5 a/W=0.7

S a 0 0

00 1.0 1.0 1.0 1.0

150 1.0 o.96 0.94 0.93
1.0 0.78 0.71 0.69

450 1.0 0.67 0.56 0.51

600 1.0 0.56 0.40 0.34
750 1.0 0.56 0.33 0.24

9 0°-  1.0 j .0.59 0.29 0.17

Table 11 Relation between d, F, and K for a

constant displacement rate l

* .,*. - . ,_ ... .....--LJ..... ... -' -.-. L, . ..



a/; W0. 5 a/w =0 .7

C4-
CI K0a0  100

00 1.0 1.0 1.0 1.0

150 1.04 1. o.98 0.97

300 1.30 1.0 0.92 0.89

450 1.49 1.0 0.83 0.76

600 1.79 1.0 0.72 0.60

750 1.79 1.0 0.60 0.43

S90 1.68 1.0 o.49 0.28

Table 12 Relation between & F, and K for a

constant loading rate F

a/' = O. 5 a/W - .7 
_ ._ a a_""'

0_a 0 a 0 00

00 1.0 1.0 1.0 1.0 1.0 r -

150 1.0 1.02 1.06 ..03 1.07

30 1.0 1.09 1.41 1.12 1.46

450 1.0 1.20 1.78 1.32 1.96

600 1.0 1.39 2.50 1.67 2.94
0I

75 1.0 1.67 2.99 2.33 4.18

900 1.0 2.04 3.45 3.57 5.88 p-

Table 13 Relation between a, F, and K for a

constant stress intensity rate K

r4)"m.

- * - * . *:- *:.V * .
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E 6ult 0.2 time e

CGPa] CMYPa] CMPa] IsJ []]

3.27 0.37 75 57 18 2. 4.

3.15 - 69 55 35 1.2

3.03 - 69 56 70 0.6

2.94 0.36 58 51 140 0.3

Table 1h Mechanical properties of1 P. .A

II
* . . *... . . .I
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Spec. d " K K
r .:

Tn mm _____ [N) [M'Pa T 'J____ min [ riam ] N________m -
Izn. s :'j

CT1 5•1 0.32 244 1.04

CT2 5.1 0.33 290 1.05

CT3 10.2 0.71 315 1.13'

CT4 15.3 1.09 316 1.16

CT5 30.5 2.15 317 1.15

CT6 63.5 3.78 232 1.25

Table 15 Testing conditions and results for the

CT specimens (mode I)

Soec. d F K
c Ic

_____ rfln] MPavrm [kN] fMPav']j

CTS7 2.5 0.23 1.01 1.12

CTS9 10.9 0.96 1.12 1. 23

CTS2 10.9 1.00 1.19 1.29

CTS1l 12.7 125 1.17 1.27

Table 16 Testing conditions and results for the

CTS specimens (mode I)

L>
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i,.v ,..

SSp c. B
aC B

[mm) m~ JnM-f~
00 CTS9 0.5 11.8 10.9 0.96

CTS2 0.5 11.9 10.9 1.00

CTS11 0.5 12.0 12.7 1.25

150 CTS12 0.5 11.6 11.9 1.01

300 CTS14 0.5 12.0 15.2 1.10

CTS5 0.55 12.2 15.2 1.16

450 CTS10 0.5 11.7 19.5 1.03

600 CTS4 0.5 11.7 25.4 0.97

7.50 CTS8 0.5 12 . L 29.3 0.92

-____CTS6 0.5 12.6 29.3 0.88

9o CTS15 0.5 12.2 38.1 1.09

CTS3 0.5 11.6 38.1 1.09

CTS1 0.55 11.7 38.1 1.09

CTS16 o..65 12.3 34.6 0.99

CTS13 0.65 11.8 34.6 1.04

Table 17 Testing conditions for the CTS specimens

(mixed mode )

.-..
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0C Spec. Fc  K. KII -e

EkN] (MPai]m [M4PaV-i]

00 CTS9 1.12 1.23 0 o

CTS2 1.19 1.29 0 00

CTS11 1.17 1.27 0 00

150 CTS12 invalid
300 CTS14 1.52 1.38 0.39 300 "'

CTS5 1.22 1.37 0.34 320

450 CTS1O 1.52 1.14 0.57 340

600 1.60 0.85 0.76 490 -

750 CTS8 2.20 0.53 1.10 560

CTS6 2.28 0.53 1.09 650

900 CTS15 2.67 (-0.06) 1.37 710

CTS3 2.60 (-0.08) 1.42 690

CTS1 invalid

CTS16 1.76 0 1.25 700

CTS13 invalid

Table 18 Results for the CTS specimens (mixed mode)
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r- Appendix I

The citerion (8,76,77)

K 4 K 12
- Kc .K..

can be transformed in the following way: Multiplying both

sides by K and adding (l/4)K,2, one obtains

I KIC {KIIc 12K I Ic.'

(K . K- = 2K + I K 2ICK1  [K1  2 4

Introducing cxI . Kt,/Kp, and extracting the root, this finally"

yields

K1 c = 1 (K + KI + 4 (oK )

The ASMiE Boiler and Vessel Code (791 gives the criterion

K10 = Cd1asinp

With KI m (Ica sin 2 'for an infi.itt plate, one obtains

Kl0  K(sinp)-' 5

With p - arctan(K,/K i ) and applying the respective

trigonometrical formula, this yields

K1  1.5 .%

...-
K1 +-

K[ 1

iK



PAGE II

Appendix 2: Calculation of the Stress Intensity Rate -

The calculation is done for specimen CT4 as an example.

This specimen broke at the critical stress intensity 'K '

1.16 IiPavr'm" and showed there a COD of 0.439 mm. Neglecting

the deformations of the crack flanks, the point of measuring

the COD has the distance L, - 1.625" to the crack tip, while

the load line has L. 1.00". LLD arid COD are related by the

simple geometrical relation

L'LD -Z

COD Li
which yields LLD 0.270 mm at the initiation of fracture.

In displacement control, the LLD is related to the

displacement rate d by

LLD = at

with which the time until fracture can be calculated:

t D = 1-07S

The average stress intensity rate K then is calculated by

I---- = 1.09 DPaVrM-/s

The calculation for the other CT specimens is done in the

same way.

For the CTS specimens, the LLD was recorded and therefore

the conversion from COD to LLD is not necessary.

• , ~~~~~~~....-..-. ................................................... ....... .. -.. .-......-..-. q'
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It is intented to keep K constant for the mixed mode

loading. The problem is that a relation between the machine ,- -

parameter a and K has to be found. The loading rate F is

related to d by

A ..'

-." -

where i is the slope of the load - LLD plot. The relation I

between K and F is given by

dIB V

where W is the width of the specimen, B is the thickness,

and Y. the comparative calibration factor. Richard {8} made _ I
the FEM calculation and got the calibration factors Y, and

Y, for the mode I and mode II component respectively (see

appendix 3). These factors have to be related by a fracture

criterion. The criterion

K + KII ]2""~ ~ ~ 4 -1+=i."

was r'osen and the assumption K,,,- K,, was made. With this

criterion, Yv can be calculated by

y!Yv =  + )4"Y

This has been done for a/W - 0.5 and a/W = 0.7.

The last remaining unknown is the slope i which has to be r
determined experimentally. For this reason, one specimen was

loaded to about 450 N and then unloaded, both at a

..................................................................



PAGE IV

" displacement rate of 2.5 mm/min. After the final testing,

the slope found there was compared with first results. The

results agreed reasonably, only for pure mode II a larger

deviation was found. The average values for the slope, which .

depends on the specimen geometry, together with the

calculated comparative calibration factor are given In table

19. Tables 11 through 13 are calculated with these data.

a/' .5 a/W :0.7 EN/m]-

00 2.84 6.26 5.2

150 2.77 6.08 5.0

30 2.60 5•56 4.o
4 

.0

450 2.36 4.74 3.5

600 2.05 3.75 2.9
750 1.70 2.70 2.9

90o 1.39 1.77 3.1

Table 19 Slope i and comparative calibration
factor Y for the CTS specimen

v,,. -8.",



"Y -*7. -

PAGE V

',"'..' Appendix 3
,1. .;

To calculate K and K3 , Richard {8) gives the formulas

KI WEI W

KI Fit -a y."
II WB YII b

where Y, and Y4 are the calibration factors for the CTS

specimens evluated by a FE14 calculation. Y and Y,, have the

following values {8) -_.

a/W 0.50 a/W 0 .55 a/W= 0.60 a/W =0.65 a/W= 0.70

YI YI Y YI YI YI Y1  Y1  Y1  Y

0°  2.84 0.00 3.34 0.00 4.02 0.00 4.94 0.00 6.26 0.00

150 2.72 0.36 3.22 0.38 3.87 0.40 4-.76 0.42 6.05 0.45

300 2.42 0.69 2.87 0-73 3 .L-6 p078 4.27 0.82 5.42 0.87 ''

450 1.95 0.98 2.33 1.04 2.82 1.11 3.48 1.17 4.42 1.24

60°  1.35 1.20 1.63 1.28 1.99 1.36 2.46 1.44 3.13 1.53

750 0.65 1.34 0.81 1.43 1.02,1.52 1.27 1.61 1,62 1.71

900 0.08 1.39 0.05 1.49 0.02 1.58 0.00 1.67 0.00 1.77

Table 20 Calibration factors for the CTS specimen

7-
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ABSTRACT

A center-cracked panel of 7075-Aluminum alloy which has

overaged from the T651 condition was loaded in tension and

subsequently unloaded to zero applied load. The permanent

surface deformation was measured close to the intersections of

the crack front with the free surfaces. The permanent

deformation (being a good indicator of the extent of plastic

deformation) was used to measure the accuracy of finite element
C. ....

analyses.-

The same specimen was modeled using 20-node

three-dimensional isoparametric elements. A fully incremental

elastic-plastic formulation was employed in the stress -

analysis. The residual surface deformations after unloading _

were compared to the experimental results.

The average experimental results compare quite favorably

with the finite element predictions. The average results were

employed to minimize the influence of material inhomogeneity,

load misalignment, and lack of symmetry in the fatigue crack.

The scatter in the results from measuring the different sides is

discussed.

"o- - - V

• .. ,'.

• ..°



INTRODUCTION 
Z'"

Over the past 35 years, the field of fracture mechanics has

evolved and developed into an important and useful tool for the

design of engineering components and structures. Several major

problems dealing with the criticality of cracks in engineering '1

components and structures can now be answered with great

accuracy. Specifically, problems involving straight cracks in

brittle materials undergoing Mode I deformation only can be

accurately predicted. Most problems which occur in practice,

however, involve materials which are ductile in the loading

applications for which they are employed. Many cracks are also

initiated in sites which involve complicated loading which

involve more than a single fracture mode. Finally, most

problems arising in application involve geometries which can not

be accurately approximated two-dimensionally. The major

research in fracture mechanics today, therefore, is geared

toward addressing the issues of ductility, mixed-mode loading

and three-dimensionality.

The issue of plasticity and ductility in fracture specimens

has long been a concern of researchers. Many attempts have been

made to propose fracture criteria which account for ductility

and to develop numerical tools '-o perform stress analyses. The :..

development and refinement of the finite element method has-

%: . .- ° *
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greatly aided the progress in this area. Many two-dimensional

studies have been performed using elastic-plastic finite element

modeling. While much of the early work has been demonstrated

erroneously, several accurate computational procedures are now

available. The area of failure prediction has not been as

successful as the area of stress analysis. No viable ductile

fracture criteria have been proposed which pass the tests of

specimen and geometry independence, consistent and theoretically

sound formulation, and reproducibility. The best that can be

said for the existing criteria is that for limited realms of

applicability (usually vary within 10-15% of the range of

brittle criteria), the proposed methods offer conservative

estimates for failure loads which are not as strict as the

brittle predictions. It is important to recognize at the outset

that elastic-plastic fracture parameters (e.g., J-integral,

CTOD, CMOD, etc.) can either be shown to be theoretically

invalid for true plasticity problems, or, are simply

experimental observations which not do pass the test of specimen

and geometry independence.

During the past three years, the authors have focused their

research on addressing the three-dimensional aspects of ductile

fracture. A major first step has been the development of an

accurate and theoretically consistent computational approach to

the stress analysis of three-dimensional fracture specimens. In
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' %. a series of recent papers [1,2,31, the effect of specimen

thickness, material hardening characteristics and mesh IF

characteristics have been investigated. These results give much

insight into the necessary properties for ductile fracture

criteria. While no new criteria have emerged to date (either

from the authors or others), the groundwork for analyzing and

asseesing criteria has been established.

A major problem with ductile fracture problems in

three-dimensions is the establishment of the accuracy of the

analysis. Convergence studies are extremely costly and only

show the consistency of the approach. They in no way guarantee

agreement with the behavior of real materials. -To address this

problem, the study presented in this paper compares the

deformation predicted from a full three-dimensional incremental

plasticity finite element analysis to the deformations measured

in the laboratory. A center-cracked panel was chosen for the

study for two reasons: first, the authors' previous studies

have been performed on center-cracked panels and second, the

LA specimen is easier to model with finite elements as the effects

of the loading holes are easier to account for (by using an L
accurate gauge length). While a successful comparison does not

guarantee the accuracy of any given study other than the

present, it is the most rigorous way of establishing the

validity of the approach and demonstyating the qualitative

agreement of the predictions made previously with the behavior

of real fracture specimens.

• I,.
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ELASTIC-PLASTIC FINITE ELEMENT FORMULATION

The stress analysis in this study is performed utilizing the

finite element method to solve the basic elastic-plastic

governing equations for the deformation of continuum solids.

J flow theory plasticity is employed with the standard

associative flow law. The Newton-Raphson, or Tangent-Stiffness

approach is employed in the finite element formulation to handle

nonlinearities. The Updated Lagrangian coordinate system is

employed to handle finite strains. The formulation of all

equations is outlined in this section.

The Jf low theory of plasticity assumes that the material

in question yield, or starts deforming plastically when the

"effective stress" (or von-Mises stress) reaches a critical

value (called the yield stress). Prior to the onset of

plasticity, the material is assumed to behave linear

elastically. Subsequently, the deviatoric stress components are

related to the deviatoric strain rate through the tensor relation

a'=R LAi

1 . + 3 f(o ) ' e
i j 7 e ij e

e..e j ( )N.-.

1 V S* (otherwise)
.E i j

.I
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where eij are the deviatoric strain rates given by

e C -c 6 (2)

Sij are the current deviatoric stress components given by

S - 6 (3)
i i 3 pp i"

S'j are the deviatoric stress components measured relative to

the current yield surface center given by

S =S - ai (4)

aij are the coordinates in stress space of the current yield

surface center, a are the Cauchy stress components, c are

the "true" strain components (discussed in a subsequent

section), ae is the effective stress given by

o ' (5)
e 7 ij ij

and oe is the effective stress iaeasured relative to the current

yield surface center -k

a V3 S S (6)

e,2. ° '*.

I:;
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The function f( e ) is derived from the uniaxial stress-strain

curve and is consistent with the Associated Plasticity Theory (a

complete discussion is given in Reference [4]). Derivation of

*f(a ) for a multilinear representation of the stress-strain

curve will be discussed subsequently.

For plastic strains which are incompressible, the

hydrostatic plastic strain rate is zero. The total hydrostatic

strain rate, therefore, is related to the related to the

hydrostatic stress rate by

c I -2v " (7)
pp E pp

Engineering materials exhibit different types of uniaxial

hardening behavior when subsequently unloaded after being

plastically deformed. Generally, the behavior falls between two

extremes called kinematic and isotropic hardening. The uniaxial

representation of these behaviors for a bilinear material are

shown in Figure 1. To allow for various hardening behaviors in

the multiaxial formulation, the yield surface is permitted to

move and expand under certain constraints. These motions are

controlled by a single parameter, 0, which can be varied from 0

to 1. A value of zero represents isotropic behavior and a value

of 1 represents kinematic behavior. The resulting yield

surfaces in a three-dimensional principle stress space are shown

in Figure 2. The yield surface center moves at a rate governed

by

. .. . . . . . . . . . . . . . . .
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max/
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iemtric
Hardening

Figure 1: Uniaxial Bilinear Representation of Kinematic
and Isotropic Hardening.
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Figure 2: Hardening Models in Principle Stress Space.
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2-:;3 ." SkSk S /(a )y 0f=

7 ki ki ij e e yd

L e

0 (otherwise)

0 < 8 -'0
0<8<1

(8)

8 = 0 -. Isotropic Hardening

8 = 1 -. Kinematic Hardening

= 2o + 2 8(a - 0) (9)
y y max y

To allow for finite strains and rotations, Updated

Lagrangian approach is adopted [5]. The coordinate system is

convected with the deformation. In this coordinate system, the

"true strain" rate is related to the determination rate (or

velocity) through

C =C c (10)
ii ijkl kl

In the absence of rotation the stress tensor is related to the

strain rate tensor in the classical manner, i.e.,

.J*, i * ? > - . . .. . . .. . . . . . . . . . . ... .. . . - . . . • . . - ]
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W i i

This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero ...

strain rate, the stress rate is given by where W are the...

rotation rates ;; .

o- "C+4

W =1 i- j (12)

ii 2 1-. .x
C'j i) pii

The total stress-deformation relation is, thereore, nite

ij ijkl kl ik kj kj ik ---

Equations ( ) (13) form a complete incremental

representation of finite plastic deformation. It only remains,.--
therefore, to quantiy the uniaxial behavior through the

function f(a e)  There are many functional ways to represent .i

uniaxial loading behavior. From a computation standpoint, a-i I,

multilinear representation is easily implemented and, by

allowing for enough segments can be arbitrarily accurate

Consider the multilinear representation of a true stress-true

-C.'%'

I .

C - C -C * * * . . C__

• ,> ' , .. '." .',' '."_'2.C. . " "" ... " . ." " - " " " . . . . . .



strain curve shown in Figure 3 The functional relationship

between the stress and strain are given by

0 (a a + 2 (a- m (a - a)

E E- 2 1 E- 3 2 E-m

(14)
a < < a

m - m+1

The plastic strain rate, therefore, is given by I'.

C CL a /E (15)
p m e

Using equation (1) and recognizing that for uniaxial

deformation, effective quantities are proportional to the

uniaxial components, the function f(ae) can be reduced to
e

f(O) = Cm/Eae (16)

The function is only linearly dependent on the current slope of

the uniaxial curve. By specifying enough segments, virtually

any hardening behavior can be accurately described.

Equations (1), (8) and (9) provide the fundamental

relationships between stress and strain rates. The equilibrium

conditions (governing equations) for a continuum body in the

absence of body forces and inertia effects can be written as ,.

;? .- i:-
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n t" on S

j i T !-.

..

and (18)

o n=Tu onS

i U

where ti are the specified loading rates on the boundary

experiencing applied tractions (ST) and ui are the
IL

velocities specified on the remainder of the boundary (Su).

Equation (13) provides the fundamental relation between

the stress state and the deformation gradients. For many

problems in application the assumption of "small strain"

introduces minimal error (mathematically, this means assuming ...

infinitesimal displacements and strains). If this assumption

is made, the strain rates are related to the velocity

gradients by

C -(au /ax a u/ax ) (19)
ij 7 i j j

°1

r'i-
-- -.-. : .' -- . . . . . . . -. .. - .. 5.

.. 5...* '- - . . ~ -.-.5 -..1.5 5
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This simplification also means that the reference coordinate

system and the material coordinate system are coincidental ,.

throughout the deformation. In the computer code described,

the option of finite or infinitesimal strain theory is left to
I.

the user. The use finite strains slows convergence

considerably for problems where the deformations are small.

As the strains grow, however, the solutions assuming

infinitesimal theory diverge from the finite strain results.

Eventually infinitesimal solutions will fail to converge

regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for

increments of displacement or by performing the standard

Galerkin technique on the governing equations, (17) and (18),

the finite element equations governing the nodal velocities,

can be written in terms of the loading rate vector, R, in

the form

K(U). L_ - R 0 (20)

The standard finite element assumptions made are given by

F

%I

"_. _-_. __.. . _t - .-_- .-.-.. .--' - . 't.'.- .--- ._ _..-] " "-- . _----."- - " 3- ... ".- .-'" - " ,,m ."a=''.' --'--',": "-""-'---r
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£ = B..

(21)

S=D(U) ."--

T

K(U) E f B D(U) B dV
elements element volume - - -

where N are the shape functions. The set of rate

equations (20) will be integrated one load increment (AR)

at a given time to determine the corresponding new

displacement increment, AU. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

L + 1, the initial solution AU i  is found from• ~L+I

K(U) AU =AR (22)
~-L -L+l -L+l

The "new" displacement is then used in the stiffness matrix,

mi
K(U + E AU ) and a new correction is obtained from

L i=i L+l

'i ri

• . .. .- ,. .. ,. ,, ," ".," " . . .. " % .':, -. ." . '. . .. ." . "' ,. '°-: .: ° " . . :'." "," - ," °- a.,2
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K[U + AiU ].& -Um1 A +L i-l -L+1- -L+l1~ mm

U E AU (23)
L i=l L+l

IU !(U) dUFJU -- U dU -L 1 -.

L

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

22
i+l
FR C

!L+1 I-L -

and (24)

i+l 1 2 /-" 
.

L < C
-L+l -LUl - 2

where R is the total load at step L + 1.

-Lad

In this study, 20-node quadratic isoparametric elements

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

Strains were calculated at the Gauss integration points in

each element from the strain-displacement relations of (19).

Strebses were cumulatively calculated at the Gauss points from -.

the stress-strain relations.

- "



17p.

Directly calculating strains and stresses from the finite

element relations (21) at points on element boundaries

inherently yields poor results. This is especially true when

CO shape functions are employed. A superior approach is to

calculate the stresses and strains at the Legendre quadrature

points and to extrapolate or smooth them to the boundaries.

This approach has been shown to yield very accurate results

for a wide variety of geometric mappings. In this study the 5

smoothing technique as developed in (6] is employed for all

stress and strain evaluations.

For elastic-plastic studies, the authors prefer to model

the crack front region with a convergent mesh of conventional

elements rather than to employ a "singular" element.

Experience with both elastic and elastic-plastic studies (3,7]

demonstrates this approach to be accurate (although, for

elastic problems, more costly). Since the nature of the

singularity is unknown in the elastic-plastic problem, it is

presumptuous to employ a singular element and may lead to

erroneous results.

.M5
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PROBLEM DESCRIPTION

Consider a panel of overaged 7075 (T7651) aluminum with a

central through the thickness crack. A typical panel is shown

in Figure 4. The panel used in this study had a width of

8.89cm and a crack length to width ratio of.0.5. The specimen

thickness was 0.984mm and the specimen length was 17.78cm.

The uniaxial stress-strain curve for the material is shown in I

Figure 5. The metallurgical aspects of this material and its

ductility are discussed in a subsequent section.

Since the panel was loaded normal to the crack only,

symmetry allowed the modeling of one octant. The finite

element grid used in this study is shown in Figures 6a, 6b and

6c. The smallest elements near the crack front had planer

dimensions of a/20 (where a is the half length of the crack).

The convergence of this grid is discussed in [3,7].

The grid shown consists of 96 20-node isoparametric

elements wi-th 624 total nodes. The total grid has 1872

degrees of freedom. The system was solved by the frontal

method. The total storage required for the entire program was

2.2 Megabytes (for double precision computations). Total

runtime for the problem discussed was 48CPU Hours on a VAX

11/780.

!i :r'I
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EXPERIMENTAL PROCEDURE

The ease and accuracy of measurement of the crack tip

plastic zone shape will be high if the plastic zone is very y' '

large. This would require a material in a very ductile

condition. However, such high ductility would create a large

curvature in the crack front during fatigue precracking and

difficulties in obtaining convergence in finite element

analysis. Hence, an alloy in a moderately ductile condition

was found to be desirable. These conditions were obtained in

7075 aluminum alloy by overaging from the T651 condition for

72 hours at 1780C (3520F). In this T7651 condition the alloy

had a yield strength of 307MPa and ultimate tensile strength

of 407MPa.

The specimen geometry used for this study was the

center-cracked type with width, w = 89mm and crack length,

2a . 44.5mm. Fatigue cracks were initiated and extended from

machined notches to obtain sharp crack tips. The fatigue

precracking was performed at a load at least 50% lower than

the load applied for plastic zone formation. After the

fatigue crack was grown, the specimen was loaded to a desired

load value to produce plastic zones at crack tips. The

maximum load was limited by the load needed for crack growth

initiation, as the experimental results were to be compared

with the results of finite element analysis without crack

"II
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extension. Attempts were made to obtain as large a plastic

zone as possible without crack growth; hence, the selected

load was very close to that needed for stable crack growth

initiation. Although initiation of stable crack growth is

generally accompanied by a sudden drop in the load, in ductile

materials, this drop is not easily detectable. Hence, to

assure that no crack growth took place during loading, the

specimen was fatigue cracked again after plastic zone size

measurement to extend the crack approximately 2.5 to 5mm. The

specimen was then loaded to fracture. If crack growth

occurred during initial loading for formation of the plastic

zone, the crack growth region would be marked by a dull

appearance, distinguishing it from the fatigue crack growth

region on either side. The results from such specimens were

rejected.

The plastic zone size was determined by measuring the

permanent reduction in thickness after the specimen was

initially loaded and unloaded. The contours of the plastic

zones were measured using a surface profile measuring device.

The sensor of the device consisted of a pointer with a small L

tip radius attached to one end, of a thin hardened titanium

alloy sheet that was Slmm long, 19mm wide and 1.3mm thick.

The other end of the sheet was rigidly mounted by sandwiching

between two aluminum pieces. Two strain gauges of resistance

120ohms were mounted on each face of the titanium alloy

.... " A
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sheet. These strain gauges formed four arms of a Wheatstone

bridge circuit. The circuit was similar to those used in load

cells, extensometers and clip gauges. The output from the

circuit was proportional to the movement of the pointer. The

signal was amplified using a D.C. conditioner. The use of the

thin titanium alloy sheet reduced the pressure on the specimen

by the pointer, and scratching of the surface was minimized.

The specimen was mounted horizontally on a table with two

micrometer screw feeds at right angles to each other. The

specimen was mounted in such a way that the direction of crack

(x-direction) was parallel to the direction of traverse of one .

micrometer screw. When the sensor was mounted the pointer was

pressing against the specimen vertically. The specimen was

moved underneath the sensor using the micrometer screw-feeds.

The output from the sensor was used to drive the x-axis of an

x-y recorder. The y-direction displacement of the table was

measured using an extensometer attached to the system, and the

output from the extensometer was used to drive the y-axis of

the x-y recorder. Several traverses in the y-direction were

made for each face of the specimen at regular intervals of

distance from the crack tip in the x-direction. The curves

obtained from these traverses were used to establish points

around the crack tip corresponding to a given thickness

reduction. From these, contour lines for different

thicknesses were established. This process was repeated for

all the four faces of the specimen.

* L!
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EXPERIMENTAL RESULTS -

The contour lines delineate the size and shape of the

plastic zone. The thickness of the specimen falls between

those required for plane stress and plane strain conditions.

The plastic zones obtained had a shape representative of this

thickness range.

A set of contour lines obtained from one face of the

specimen are shown in Fig. 7. The scatter in the data for the

outer contour lines is higher than the inner ones. This is

because the rate of thickness variation decreases with

increasing distance from the cracked tip, as can be seen from

the differences in the spacings between adjacent contour

lines. Although the resolution of the sensor is very high and

is limited only by the extent of the amplification of the

signal, errors can be introduced due to any nonplanarity of

the initial specimen surface and slight variations in the

pressure applied on the micrometer screws while advancing

manually. The planarity of the surface was checked initially

before deforming the specimen. The variations- in pressure can

cause an error of approximately 0.0025mm. The depth of

0.0051mm and 0.0102mm represented by the outer contour lines

are very sensitive to these variations. The scatter in the

data, also is produced by the nonhomogeneity of the material,

caused by coring and inclusions during casting and orientation

effects during subsequent mechanical processing.

~~~Ii:i:
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It is also seen that the plastic zone is not exactly

symmetrical to the initial notch direction, which also can be

attributed to inhomogeneity. Plastic deformation occurs more

extensively in the softer regions. Material inhomogeneity

also may cause change in the orientation of the fatigue crack,

which tilts the zone ahead of it. Nonsymmetry can also be

produced by misalignment of the specimen and the testing

machine, but the misalignment in the set up used was

negligible.

In the finite element analysis inhomogeneity is not taken

into consideration and hence, the zone is assumed to be -

symmetrical. A comparison with the finite element results can

be made by averaging the distance of each set of contour lines

from the initial notch direction. Such contour lines -

determined from the four faces are shown in Figs. 8-11. The

zone sizes are slightly different for the four faces. This

also results from the uneven crack growth during fatigue

cracking due to inhomogeneity. Since the excess deformation

in one region is compensated by the lack of it in another,

averaging the results minimizes the error involved.

I j-

°-

%"I



30

IF,

-,-

-r4 V4
,- 3 CA ( 9

0 Go0

x

000

0

'4

oc-,4

cmm

0

a-

OeCD

-n 0o -

A ~lA~jDmojaour.~



d 31

% S

V4 C~4 mP -0

V14 %54 -M 4 4*.

000 Un

IRV

'-.9

S0

.9.14 CD

0

0" 0

ca I-

4J M

.5oI

(auw) AdT. jovioz moi souvisra



-w- ~~ ~ ~ --L~ -.- %;- -. 7'. K--.TA7

32

W'

________4 _______ _____________4____________ en -

J *%.lilt

00 0~

a ca
q4e q41 r

00Dm

4J.

OU r.

-P40

r4U

(m ALd. i'x) ojauz~



33

!i in
'CD

.' ....

[C-

%u

cis.

,S-4 0d

6606 0

0o m --

" -Tj

'.. 4 , - -"

o 4..I-.
S.. 0- -

4-.-
.. U) Si..-

.. " 0

" %4-,

2: = 0

2..2 .ki

i'.'
,

''-. l'. -'-''-.-?-,-'-.'_.-_-_'-" '-."," '_i'."-".'' " -. -" " _'.'-.' ). ._ ... ;_.-';,." ; -- _'3 .- 2. .'.' . -C--



34

COMPARISON EXPERIMENTAL AND FINITE ELEMENT RESULTS

F-.

The finite element analysis discussed previously was

performed and the residual deformation after unloading the

specimen was calculated. These results were plotted as

contraction contours and are shown in Fig. 12. The average

results (the average of all four 1ides as previously

discussed) are also plotted from the experiment. The results

from the finite element analysis are in good agreement with

those obtained from the experiment.

The finite element predicts slightly more plasticity than l-

the experiment predicts. This is expected since the finite

element formulation assumes all nonlinearity is due to plastic

(or permanent) deformation. In real materials, however, there

is some recoverable nonlinear deformation (i.e., nonlinear

elastic deformation). The averaging, material inhomogeneity

and error in the two methods more than account for the

deviations (less than 4%, maximum).
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CONCLUDING REMARKS

Comparison was made between the experimental and finite

element surface contractions for a center-cracked panel. The

results compare favorably indicating the accuracy and

realistic modeling of this finite element formulation and

modeling. The deviations between the results which were

observed are less than can be accounted for due to inherent

error in the measurements. In fact, the results are more

accurate than one would expect.

It is important to highlight several factors when

discussing three dimensional finite element analyses in

general, and in particular for nonlinear problems. The

results are highly dependent on the grid characteristics and L

on the convergence algorithm employed. Additional degrees of

freedom do not guarantee a more accurate solution [1,2,3].

When employing three dimensional finite element models,

convergence studies alone are not sufficient. Comparison

between predictions and true material behavior is essential.

With regard to fracture problems, it is essential to compare

predictions from analysis with local parameters as erroneous

local models can be forced to produce results which agree

globally (i.e., on remote quantities, e.g., nonlinear

compliance).

"r
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The unique aspect of the study presented in this paper is

the direct comparison with experimentally measured local

quantities demonstrates the accuracy of the modeling

employed. This approach can now confidently be applied to

fracture problems for the testing of fracture criteria and the

prediction of crack growth and instability. Without such a

demonstration, numerical solutions and verification of failure

criteria are always suspect. Due to the complicated nature of

the problem, each component of the analysis must be verified

independently to guarantee accurate solutions and meaningful

predictions. This component is lacking in three-dimensional

studies reported to date.
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ABSTRACT

The modeling of fracture specimens and the application to

growth problems is discussed for elasto-plastic materials.

Emphasis is placed on modeling three-dimensional effects and

slow crack growth. Extensions to creep modeling is discussed

through reference. Directions of on-going and needed future

research is included.

The modeling of fracture phenomena in materials which

- exhibit nonlinearities has been a topic of interest for many

years. As early as the 1940's, researchers have recognized

that real materials used in engineering practice exhibit both

material and geometric nonlinearities. Since that time, much k
effort has been made to address and quantify the effect of -

nonlinearities on fracture and ultimate failure of materials.

bThe purpose of this paper is to summarize many aspects of the

modeling of nonlinear fracture mechanics. Specifically, the

paper will address the elasto-plastic and elasto-visco-plastic

behavior of metallic materials and the applicability of

modeling phenomena to fracture problems in these regimes. The

emphasis will be on numerical modeling schemes which can be

experimentally verified and computationally implemented.

Failure criterion and fracture modeling is the topic of a

separate study.

The problem of modeling fracture problems in nonlinear

". materials can be subdivided into three major numerical (or

* "
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theoretical) problems: the constitutive modeling of the funda- -

mental nonlinearities (both geometrical and material), the

prediction of stable crack growth and fracture instability, and

the numerical modeling of stable crack growth. This paper will ir

address the computational approach to fracture modeling and the

three-dimensional nature of ductile crack specimens.

Discussion will also be presented on the modeling of stable

crack growth from a computational viewpoint. Failure and

fracture prediction can only be intelligently addressed through

studies employing accurate modeling of the nonlinear problem L

and are in the realm of ongoing and incomplete research. The

methodology for time dependent visco-plastic behavior will be

discussed as extensions and modifications of these problems.

COMPUTATI:NAL APPROACH TO
ELASTIC-PLASTIC FRACTURE PROBLEMS

Many authors have demonstrated the three-dimensional

nature of ductile fracture phenomena (for a review of the

literature, see (11). To address the accuracy of the Finite

Element Method and standard plasticity analyses for analyzing

fracture specimens it is necessary to examine th6 local

deformation near the crack. Several authors have demonstrated

Lhat quantitative agreement with gross specimen quantities

such as compliance, global energy (including "Energy

Integrals"), gauge displacements, etc. do not guarantee

accurate local predictions (see, for example, [2,3,4]). To

f •
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address this problem, a local deformation prediction is

compared with experiment.

A panel of overaged 7075 (T7651) aluminum was tested

experimentally. The specimen was a center-cracked panel with

width 8.89cm and crack length to width ratio of 0.5. The

specimen was loaded to the highest applied load precluding

crack growth and subsequently unloaded. The residual surface

deformations were measured using a special LVDT probe and

measuring technique described in [5].

The same panel was analyzed using the Finite Element

Method. J-flow theory plasticity was employed with a

multilinear uniaxial hardening curve. A mixed kinematic and

isotropic hardening law with balanced weights was employed

together with an adaptive load incrementation scheme [6].

Geometric nonlinearity was modeled using the Updated-Lagrangian

approach [6,1]. The converged idealization and complete

formulation of the problem can be found in [1]. The panel was

loaded incrementally and unloaded to zero applied load. As

expected, much residual stress and deformation remained. The

residual displacements on the specimen surface were compared

with experiment. The comparative results are-summarized in

Figure 1. The solid lines are the numerically predicted

surface constrictions and the discrete points are from the

experimental data.

The average of the four sides was compared as the local

inhomogeneity and lack of symmetry is virtually eliminated in

.... .. .... . . . . _ .. - .. ... .. . . ... -. .. . .. ... . .. . j .- • .. , .... . . . .... . . ,.• ... . , . .... ,.
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the experimental average. The results demonstrate the

accuracy of the finite element modeling and solution procedure

being employed. The experimental data and predicted contours

differ by less than 3%. This is more accurate than was

expected comparing with claims made for the finite element

solution of crack problems in two dimensions.

The comparison presented above and described fully in [5]

demonstrates the accuracy of the current numerical approach

and modeling. The results predicted subsequently would model

fairly well the true deformation in engineering fracture

specimens. The remainder of the problems to be discussed will

qualitatively examine some of the more important aspects of

fracture specimens and modeling.

To investigate the effect of material hardening model, a

center-cracked panel 8.89cm wide was studied. The crack

length to width ratio is 0.5 and the specimen length to width

ratio is 2.0. The idealization is the same as discussed

previously [1]. The loading is normal to the crack direction

and reaches a maximum load equal to 1/3 for the material yield r
stress. The material is modeled as either exhibiting

kinematic hardening behavior., isotropic hardening behavior or

a mixed hardening behavior (as described previously). Since

the global applied loading is monotonic, the three hardening

models would predict identical response if the local

deformation were truly proportional in nature (assuming no

crack growth).

_i



Figures 2, 3 and 4 show the yield zones on the surface of 'A

the specimen at maximum load for each of the hardening models.

The local response is definitely nonproportional. The

isotropic model predicts more yielding on the crack extent line

than either of the other two models. This would suggest a more

ductile response ahead of the crack (implying a greater

tendency toward stable crack growth prior to final failure).

The results with mixed hardening have proven to be the closest

to what is observed experimentally. The others, therefore,

should be viewed with that fact in mind.

The largest affect of hardening model is the yield

characteristics on the crack extent line. The maximum yield

radius and the "skewing" of the yield zones is fairly

independent of the hardening model. It is important to

emphasize, however, that the differences between the

predictions are significant and the local response is highly

nonproportional.

Figures 5, 6 and 7 show the yield zones on the midplane of

the specimen. These zones demonstrate the same hardening

effects as do the surface zones. The greatest influence of

hardening-model is seen on the line of crack extent. On the

midplane of the specimen, a plane-strain type of zone would be

expected (i.e., similar to zones predicted with a 2-dimensional

plane-strain analysis). The mixed hardening model demonstrates

the most realistic results (which is consistent with the

surface observations).

4..;i-'
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The results demonstrate that the local response near a

crack is not of the proportional type. This has significant

implications with respect to valid failure criteria and

analysis models. The results presented also demonstrate that a

mixed hardening rule is the most realistic for modeling the

aluminum alloys investigated so far and is probably best for

most engineering metals. A complete discussion of the

hardening modeling effects and the implications of these

findings can be found in [7].

To study thickness effects, the specimen thickness is

varied and the different zone sizes and shapes are reported

(the same center-cracked panel is used with mixed hardening

assumptions). Figures 8a, 8b, 8c and 8d show the surface yield

zones as a function of thickness. The thickness is varied from

1.5 times the ASTM plane strain requirement to a very thin

panel dimension (total thickness of about 3mm). Even for the

thinnest specimens, the classical "plane stress" zones are not

recovered demonstrating that the assumptions of 2-D plane

stress are not valid for this specimen. Also, even for very

thick specimens, the predicted zone does not conform to

classical plane strain zones (the surface deformation will

never conform to 2-D assumptions since not only is the surface

normal stress zero but the strains required to produce plastic

incompressibility require a nonuniform normal strain through

the thickness which is incompatible with 2-D plane strain). It

is important to remember that a state of stress with zero

°..
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normal and antiplane shear does not need to reduce to 2-D

plane stress.

Figures 9a, 9b, 9c and 9d show the midplane zones for the

four thicknesses. As the thickness increases, it is obvious

that the zones approach plane strain zones (which they

should). Even at the largest thickness, however, they show

some skewing due to the finite geometry. From these results,

the ASTM criterion may not be good enough for ductile

materials.

The yield radii and extent of yielding ahead of the crack

tip are summarized in the tables. It is important to note

that the yield radius changes by about 10% with thickness,

however, the yielding ahead of the tip changes drastically

and, thus, the plastic area changes. Since more energy is

being dissipated with larger areas, the ductility and fracture

properties are obviously dependent.

This study demonstrates the thickness effects on local

yield characteristics and also mandates 3-D analysis for

accurate quantitative predictions. A complete discussion on 57>
the effects of specimen thickness can be found in [6].

MODELING STABLE CRACK GROWTH

IF2
The modeling of stable crack growth is important for the

prediction of ductile fracture phenomena. The processes of

stable crack growth and plasticity are almost always present

in application and, indeed, are

V %
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Table la - Yield radii as a function of
thickness for surface yield zones .e..

Thickness rmax/a ro/a

T = 2.54cm 0.307 0.045
T = 1.27cm 0.327 0.075
T = 6.35mm 0.331 0.205
T = 3.175mm 0.343 0.296

rmax - maximum yield radius
ro  - yield radius along crack line

Table lb - Yield radii as a function of
thickness for midplane yield zones

Thickness rmax/a ro/a

T = 2.54cm 0.260 0.039
T = 1.27cm 0.280 0.071
T = 6.35mm 0.283 0.193 ..
T = 3.175mm 0.299 0.288

extremely interrelated. The modeling of this process,

however, must be numerically accurate independent of any

particular failure criterion.

Ductile fracture is inherently a three-dimensional

problem as has been demonstrated both in this paper and

elsewhere ([l] provides a review of the topic). No studies to

date, however, have successfully modeled a slow growth process

in three-dimensions. A major reason for this is the extreme

number of degrees of freedom needed to model such a process if

standard crack growth (fixed grid) modeling is employed. A

;i-; ..- " .-Y;. i-:.2. 2-;-..:'.-.--. -.''.- -. .'---.. -..---• ...........-.. •......,....-...-...-,...-..--.--,,..,..-...,.....! .
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better approach is to employ the "Mesh Adaptive" technique r-1

introduced in [8].

The standard method used to simulate crack growth consists of

employing a grid with extremely small elements along the line of

crack extent. Nodal forces (or displacements through a spring

release method [9]) are relaxed at certain load levels to create new

free surface. If a criterion independent study is done, this method

will yield very good agreement with experiment (see, for example,

[10], for a typical example). Convergence studies have

demonstrated, however, that a typical Mode I center-cracked panel

which exhibits 15% total crack growth can require upwards of 1500

DOF to achieve good accuracy. The extension of this method to

three-dimensions, therefore, is not realistic.

In the "Mesh Adaptive" approach, a standard stress analysis is

performed until the onset of stable growth is predicted (either

directly from experiment or from a theory). The load is then

incremented a small amount (the amount is influenced only by

numerical convergence, however, an amount correspondent to 2 percent

crack growth or less is accurate for most aluminum alloys) and the

amount of crack growth is predicted (or calculated from experiment).

The near crack mesh is convected to the new location of the crack

tip. The stress along the new free surface is relaxed to zero and

the new resultant plastic state is calculated in the entire

specimen. The new stress state is then extrapolated to the new

geometry and the process is repeated for each increment of crack

growth.

r-.
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Comparison with this experiment has demonstrated this U-F

approach to yield accurate predictions for several 2024

aluminum specimens. Convergence studies on a previously *".

studied problem [8] have demonstrated a DOF reduction of about

200% and a computation time reduction of about 100%. For

three-dimensional problems, the "Mesh Adaptive" method should

yield even greater improvements. Computation time, however,

will still be extreme if accurate predictions are desired.

MODELING VISCO-PLASTIC BEHAVIOR

To model visco-plastic or creep behavior the rate

equations of stress and strain are formulated to satisfy

equilibrium and geometric compatibility. The formulation (an

outline of which can be found in (11] in addition to many

other standard texts) then requires only the constitutive

behavior and flow rule. From the standpoint of fracture

mechanics, the material modeling is the only unsolved

problem. The fracture modeling is done exactly as in

elastic-plastic problems. Fracture prediction, however, is

still an open question.

The constitutive modeling of visco-plastic behavior is

still an open issue. Generally the models can be divided into

two categories: those that depend on internal variables and

those which utilize only stress and strain measures for their

flow rules. A good (although somewhat biased review can be

:[:T :L3 -
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found in [II]). From a computational standpoint, a -

* visco-plastic flow rule should be only implicitly dependent on

time and contain parameters which are true material
• .

constants. The last requirement is the most difficult to F

achieve.

An additional problem involved is the material

variability or "scatter" in the visco-plastic regime. Many of

the materials involved show uniaxial scatter of 100% or

greater in their primary creep behavior [12]. A theory,

however, will not predict this scatter if it is deter-

ministic. Two approaches are open: choose a statistical .-

theory or attempt to qualitatively model applications by

quantification of a single material sample. If the latter

approach is chosen, consistent results can be obtained. This

approach is the one currently employed by most authors and

reasonable results are obtained (for a review, see [13]).

Studies are underway to address these problems, however,

visco-plastic modeling of engineering fracture problems is

still an unsolved and open question. The problem, however, is

one of constitutive modeling. Fracture modeling is identical

to that for elasto-plastic problems.
lb..
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SUMMARY

The emphasis of this paper has been on the three-dimen-

sional nature of ductile fracture specimens, a short review of

the state-of-the-art modeling and an emphasis on the

importance of careful modeling and the importance of con-

vergence studies for nonlinear problems. The three-dimension-

al nature of fracture must be addressed before meaningful

prediction can be made on the failure of real engineering .".

materials in application. Two-dimensional studies are a

necessary first step in the research process, however, great '-"-"

caution needs to be exercised in the interpretation of re- -

sults as the criteria which appear to predict reasonable

answers to a few, idealized example problems may not have any

application to real situations (e.g., [14]).
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r/a =.045

Fig. 8a -Surface yield zones for specimen with
2T =2.54cm

r/a =.075

Fig. 8b -Surface yield zones for specimen with
2T =1.27cm



Fig. 8d Surface yield zones for specimen with
2T 3 .3Smm



r/a =.039

Fig. 9a -Midplane yield zones for specimen with
2T =2.S4cm

ra 0 71

Fig. 9b -Midplane yield zones for specimen with
2T =1.27cm



r/a .193

Fig. 9c -Midplane yield zones for specimen with
2T =6.35mm

Fig. 9d - Midplane yield zones for specimen with
2T =3.175mm
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The first step in characterizing creep crack growth is the

establishment of valid constitutive parameters for modeling the

deformation process. To this end, several uniaxial tests were

conducted. These results are then processed and correlated

with postulated constitutive models.

Testing Apparatus

An "ATS" Lever Arm Tester Series 2410 was used for the

creep testing. The test stand is designed to apply static

stress to a test specimen for an extended period of time at a

constant elevated temperature. The apparatus consists of a

balance beam that connects the test specimen to a weight pan.

Ratios of 3 to 1 and 20 to 1 are designated between the weight

pan and the specimen. The lower ratio is used to provide . -

optimum accuracy at lower loads. The weight pan is part of the

overall weights and is suspended with a chain to prevent

bending movements to the load trains.

On the specimen side of the machine, a balance beam

leveling motor compensates for the elongation of the test

specimen. If this is not available, the balance beam may

become unlevel, thus-changing the calibration of the weight

system. This is important in maintaining the load accuracy

within the ASTM requirements.

A tabular furnace with an electrical-resistance winding

heats the test specimen through radiation in an airL ]'.-.atmosphere. The furnace has three heating zones. The tube is

L. °
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located in a vertical position, with pull rods connected to the

specimen. The temperature is controlled by means of a

thermocouple, located in the vicinity of the test specimen,

within tI0 C.

When creep data are required, the specimen strain must be F

measured as a function of time. This is difficult because use

of strain-measuring transducers is not practical at the test

temperature. A mechanical linkage must be attached to the I

specimen to transmit the strain to the strain-measuring

equipment outside the high-temperature environment. A linear

variable differential transformer was used to measure the

strain. It consists of a movable metal core that changes the

electrical characteristics with small motion associated with

strain measurements. The linkage is made of an alloy that can

withstand the test temperature encountered.

Specimen Preparation

The test specimens were cut from a 1/2" thick sheet of

Alloy 718-with composition listed in Table 1. The tensile axis

of the specimen were perpendicular to the rolling direction.

The specimens were heat treated and machined to the ASTM

specifications. The heat treatment procedure is shown in Table

2. The specimens were then surface treated in order to F

eliminate any scratches and other stress raisers that may have

remained from the machining.

-A
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Specimen Loading -

Attention was paid to avoid straining the specimens when

mounting them in the adapters and load train. With the

specimen in place, the load train was examined carefully for

any misalignment that may have caused bending of the specimen

under load.

The upper load train was suspended from the lever arm, and

the compensating weight adjusted so that the lever arm

balanced. Strain-measuring clamps and the extensometer were

attached to the specimen, and the load train was inserted into

the furnace with the specimen centered. The specimen was

stabilized at the temperature before loading at least for one

hour.

Loading the weight pan was done smoothly and without

excessive shock. This was done by lowering the supporting jack

under the load pan. In the case of step loading, the weight

was placed on the weight pan in measured increments, and the

strain corresponding to each step of loading was recorded.

Temperature Control

The specimen should not be overheated while brought to

temperature. To do this, the specimen was brought to 100C m

below the desired temperature in about 1-1/2 hours. Then, over

a longer period, the specimen was brought to the desired

temperature.

I :i
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Table 1. Chemical Composition of Alloy 718.

Composition, Weight Percent

0.04 C Bal. Fe 1.00 Ti

0.19 Mn 51.14 Ni 0.52 Al

0.05 Si 17.96 Cr 0.43 Co

0.005 P 3.12 Mo 0.02 Cu

0.005 S 5.19 Cb and Ta 0.003 B

Table 2. Heat Treatment of Alloy 718.

Anneal at 955 0C for 1 hour - air cool

Age at 720 0C for 8 hours, furnace cool to 620 0C I.
Hold at 620 0C for total aging time of 18 hours

Results

Two series of uniaxial tests were conducted: one at 550 0C " -

and one at 6500C. The results are summarized in Tables 3 and

4. The strain vs time curves are shown in Figures 1-9.

Evident from these tests is that the specimen exhibits moderate

primary creep at 550 0C and virtually none at 650 0 C. This is

evident at all the load levels tested. For the 550 0C data, at

time explicit model was fit to the data. The results are given

in Table 5. These results can either be used directly as a

• - ..-



. s- .- ..

5L

.,... .., .

constitutive law, or, can be correlated with a time-implicit

differential model allowing for more general hardening. Many

candidate models exist and are currently being investigated.

The 650 0 C data exhibits virtually no primary creep.

Unfortunately (from a modeling standpoint), much tertiary

behavior is evident prior to failure. Since tertiary creep

involves many deformation and failure modes simultaneously,
t-. a-.

modeling is difficult. The approach to be used in fracture

studies is to assume tertiary behavior does not occur and that

the fracture mechanics models the damage which is not accounted

for by the hardening laws of primary and secondary creep.

Fracture tests are currently underway. Compact tension

specimens will be loaded at constant load and temperature.

Crack growth,. crack opening, gauge displacement, mouth Xt

displacement, etc., will be measured. Finite element studies "_-.

are also underway to model the growth. The results will be -

presented when they are completed.

J1.
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Table 3. Tensile Properties of Alloy 718 at 550 0 C.

Yield Strength = 144.08 KSI

Ultimate Strength = 176.78 KSI

Elongation = 20.72%

Specimen
Number Stress (KSI) Time to Failure

5 152.9 210 hours

4 153.4 87 hours

9 155.1 189 hours

6 155.2 212 hours

7 157.2 190 hours

Table 4. Tensile Properties of Alloy 718 at 650°C.

Yield Strength = 133.89 KSI

Ultimate Strength = 163.67 KSI

Elongation = 25.7%

Specimen
Number Stress (KSI) Time to Failure

13 143.2 90 minutes

14 132.9 240 minutes

15 110.1 41 hours, 30 minutes

16 99.9 227 hours, 30 minutes

.. . . . . . .. . . . . . . . . . . .. -
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Table S. 550 0C Data Fit to Model.

C C C t + C (l-ert
0 0 A

* Specimen

Number CO CO cA r Max Error .. ,

4 0.0252 2.265 X 10-6 4.758 X 10-3 1.612 X 10- 3l.89%

5 0.0336 2.389 X 106 5.442 X 10-3 2.353 X 10-. 1.95%

6 0.0264 2.082 X 10-6 4;*783 X 10-3 1.03 0 .9

7 0.0398 4.488 X 106 5.162 X 10-3 2.983 X 10- 3 .35%

8 0.0403 3.304 X 10.6 6.199 X 10- 3 9 X 30 .l

3.339S. X 0- 1.1
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APPENDIX F:

Tr4inite Element Formulation for Creep Problems."r

By: E. Thomas Moyer, Jr.
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This section outlines the formulation being employed in

the creep-fracture studies. The total strain rate is

decomposed into an elastic and visco-plastic portion in the

form (uniaxially).

e vp

where the subscript e will refer to elastic quantities and the

subscript vp will refer to plastic quantities. The total

stress rate is related to the elastic strain rate in the form

-- Dc (2)
e

All deformation is assumed to be elastic except when the

flow function, F, first reaches the condition -
FC, ) - F = 0 (3)

vP 0

where F0 is the initial flow stress. The total uniaxial stress

can be written as

a= + HIc (4)

Y' VP

where ay is the uniaxial yield stress. The elastic (or

initial strain) is related to the zero time stress as

0 e a (5)
e ...-. ,
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This relation also holds at other times relating the total

stress to the elastic strain. Integrating the above, the

visco-plastic strain is given in the form N_.

0 -rt
C =C t + c (l-e ) (6)
vp 0 A -y..:,*%

• -rt
C + C re (7)

vp 0 A

where c0' CA' r are material parameters.

For multi-dimensional problems, the visco-plastic strain

rate generalizes to the form -.

= <0(F)> aF (8)
-vp U .-"

where y is the fhuidity parameter and 0 is the yield .

function. The total strain can be represented as

C C + C (9)
~ -e -vp

and the visco-plastic strain can be simplified to

c =y<0>a (10)

T Vp. .. .

T

~ ''

.4
a 8F

................... ,., " " .-*.--.,. .- - - - - - - - - - - - - - - - -~.7.. .
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For many practical applications, the choice of a flow function

in the form

N -

ItF) OF -FO) F)F (1)r
r00

= 0 otherwise

is appropriate (especially for metallic materials).

The equations formulated above are solved incrementally

using an explicit time integrator. The increments of

visco-plastic strain are given by (at time tn)
nA

n *n
AC A t E (13)

-vp n -vp

The strain rates are incremented by the relation

n+l * n n n
-- C + H Aco (14)~vp ~vp ~ ~ '.

where

H= =H (a (15)

n n n n
A DA c D(A c - A c ) (16)

~ ~ -e ~ ~ -vp

The strain increments can be written as (in terms of the

incremental displacement additions)

n n n
Ac =B A d (17)

.. .
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yielding

n n n en
A =D [B A d -c A t] (18)

. . . . -vP

relation for the stress increment. -

The B matrix relating the strain to the displacements can

be decomposed into a linear and nonlinear portion as

n n
B =B + B (19)

- -0 -NL

The special case of linear deformations renders B = 0.
~NL

The equilibrium conditions for a given time increment can

be written as

nT n n
f (B ] Ao d V+ A f =0 (20)

n
where A f are the incremental forces applied during the

previous time increment. The solution is

n n-I n
A d =[KT] A V (21)

where

n nT •n n
A V f v [B Dc A t d V + A f (22) l

and the stiffness matrix is4....

n n T n f
Kn (B) n (23)

!T V--"'



5

-- ".- --

The stresses, displacements, strain increments and strains are

then updated as

n+l an + ACyn (24)

n-l n n
d =d + A d

n n n -i nA =B A d -D A a, (25)

-vp . . ....-

n+l n n
S C + A c (26)
Vp ~vp -vp

For most problems of interest, large strains can occur. A

Total Lagrangian formulation is adopted here. The B matrix is

decomposed as

B =B + B (27)

S -0 -NL

The stiffness matrix can then be written as

K =K + K (28)
S -0 -NL

where the linear and nonlinear portions are given as

T
K =I B D B d V (29)
-0 V-0 ~0

T T T
K S v (B D B + B D B + B D B )d V (30)
-NL V -0- -NL -NL- -NL -ML 0O

The displacement increments can then be written as

n n-i n
A d =K ] a V (31)

-.. T ~

•r3
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n -1 n -1 n

S....A d n K A V +K A vn (32) 7
- -0 -NL

where

n n n n
A V A + VN +N A f (33)

n T n

A V =I B D A t d V (34) 1]~0 V ~0 ~ vp, 1.

n T *n"""
A V =I B D A t d V (35)

NL V NL vp n

The total stress increment becomes

n n *n n
A = D(B A d - A t) + D B d (36)

- -- 0 -- Vp - -NL

In this formulation, the strain is decomposed into a

linear and nonlinear component. For the special case of plane

problems, the specific forms are

C= C + C (37)
~ -L -NL

The B matrices are

8N 0i .

B = 0 a N (38)~0 i

a N a N
i i

. . Y.. .'..... ..-. .... ..-.
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8 u aN 8 v a

= x Z- dX d

B 8uaN av aN (39)
NL i i

8 u u N +8 v a8 N 8 +.v aNa i i i i ,"'

The strain components can then be written as

a u .':-;

: = av (40)!L a'-'f"

au + 8v

2 2-
I (.+ I 2 2

2 2
C 1 (a U) + 1 (8 v) (41)
NL T7 " 7"

(a u) (a u)+ (av) (a v)
L dTx T Y T X Z

The formulation summarized above has been implemented in a

computer code and rigorously tested. The next stage of the

research is centering on modeling slow crack growth and "'

alternative constitutive formulations.

._+ , , ., -, -'. -.- ..,..v .. ...... . .,.. .. .. ,... . . ,. . .. .... ., . .,... * .. . .. ..,, ,+.. ..'.
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ABSTRACT

The governing finite element system for elastic-

plastic analysis of fracture specimens in three-dimen-

sions is formulated. The formulation accounts for mixed

material hardening, finite strains, finite rotations and

plastic incompressibility. The implementation of these

aspects into a computational formula is presented and

alternative formulations are compared. Small strain theory

is recovered as a special case to the present formulation.

Analysis is performed on a finite thickness center

cracked specimen. The grid characteristics required for

converged solutions are discussed. The effect of material

hardening model and specimen thickness are studied. The

local yield state is examined as a gauge of the local

deformation processes. The implications on the fracture

behavior of the specimen is discussed.

Local surface displacements are compared to experi-

mentally measured yield surfaces. The formulation is

shown to predict extremely accurate local deformation in

the neighborhool of the crack front. Contrary to the few

three-dimensional fracture studies carried out to date,

this analysis concentrates on the local deformation be- .

havior which ultimately controls fracture. Accurate

resolution of this behavior is essential before meaningful

fracture criteria in three-dimensions can be developed.

A. t' -", .
-.A *- 'i .- -,_-:-; '* ,,''.. - - '. :''.. , -.. - . .. .i:i; . .

"-
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INTRODUCTION

The field of fracture mechanics has developed,

primarily over the past 35 years, as an important and useful

tool for the design of engineering components and struc- -

tures. Much of the success of fracture analysis is due to

the advancement of the finite element method as an accurate

approach to numerical stress analysis for problems which

involve geometric discontinuities and singularities.

Originally, fracture studies were aimed at predicting

brittle failure of materials. While a necessary first

step, this approach did not give meaningful results to many

problems of practical importance. Much of the later work

in fracture mechanics, therefore, is geared toward

addressing the problem of ductile fracture.

Ductile fracture problems involve much local nonlinear

deformation. Analytical approaches to the concerned

boundary value problem have proven largely futile. To

obtain analytical solutions, far too many unrealistic and

inappropriate assumptions are required. Numerical solutions

are, therefore, imperative. Much work has been done in the

area of elastic-plastic stress analysis of fracture speci-

mens. Very little, however, has been carried out in

three-dimensions. In application, most components are not

thick enough to be considered in plane strain. Indeed,

most true plane strahi fractures are brittle in nature.

Plane stress analysis on fracture specimens is rarely

".' ..'. ° .' .' ' .'. ' .° ... .... .. . -. . 2.. .. . . - . .; .°- . . J . / . . .- i ..• . . .. --
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applicable. The assumption of plane stress violates the

compatibility equations which are essential to the formula-

tion of the full boundary value problem. While this is

unimportant far from the crack tip, elastic solutions

demonstrate the breakdown of the assumption near the crack

tip [1]. In plastic analysis, the assumption is further

compounded by the fact that four general deformation regions

can be identified near the crack front: a) the near tip,

elastic, plane strain region; b) a near tip region governed

by an asymptotic "plane stress like" region (which, in fact

shows contributions from both elastic plane strain, plastic

plane stress and possibly boundary influence); c) a transi-

tion region in which the deformation is nonlinear, not

dominated but influenced by the singular stress field (also

a fully three-dimensional region); d) the exterior region

which is either plane stress dominated, plane strain

dominated or fully three-dimensional depending on specimen

geometry and thickness [2,3].

While two-dimensional elastic-plastic studies may

provide some insight into the qualitative aspects of

ductile fracture, they cannot be expected to yield quanti-

tatively useful results for problems which are not dominantly

brittle. This is not to imply that two-dimensional studies

are not important. They must be done to provide qualita-

tive and preliminary information which would be far too

costly to obtain with three-dimensional analysis. For the

.r -
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quantitative prediction of ductile fracture phenomena, how-

ever, two-dimensional studies cannot be relied upon. The

success reported for problems with reasonable ductility in

the literature can more than be accounted for by the use of

global fracture criterion which are theoretically (as well

as computationally) unsound. This will be expounded upon

in a later section.

The work discussed in this paper has evolved over the

past three years in an effort to systematically, consistently

and accurately address the problem of ductile fracture. The

work is by no means complete. The full, incremental elastic-

plastic finite element formulation is presented. Much debate

exists in the literature with regard to valid formulations

and yield criterion for ductile fracture specimens. Specific

ch6ices were made in the formulation based on experience with

two-dimensional studies. It is believed that the current

approach will be adequate for most engineering metals at

room temperature.

Results are presented for three different aspects of

ductile fracture specimens. An important aspect of any

numerical study is the validation of the accuracy of the

numerical method being employed. With regard to finite

element modeling of ductile fracture, this is extremely

important (not only is it necessary to theoretically formu-

late a valid approach, it is critical to demonstrate the

accuracy of the discretization employed). Verification of

the finite element approach is demonstrated in this work.
..-
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A comparison is made with experimentally measured local
IV

deformations. This approach eliminates the problem of

criteria bias evident in most ductile fracture studies.

Results are also presented demonstrating the effect of

hardening modeling and specimen thickness on local

plasticity characteristics.
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' " PLASTICITY FORMULATION

Several approaches to continuum plasticity have been

proposed over the past several decades. Most are based on

either stress or strain yield criterion and various

hardening assumptions. No clearly "BEST" approach has

emerged to date. For most engineering metals, however,

the J2flow theory of plasticity is widely accepted for

practical applications. This approach is reviewed and

employed in the current investigations [4].

The J flow theory of plasticity assumes that the

material in question yield, or starts deforming plastically

when the "effective stress" (or von-Mises stress) reaches a

critical value (called the yield stress). Prior to the

onset of plasticity, the material is assumed to behave

linear elastically. Subsequently, the deviatoric stress

components are related to the deviatoric strain rate through

the tensor relation

I i 3 e ' yd
L4... Sij + +. f (ae) e

e. = (1) ,.'

Si (otherwise)

where ei are the deviatoric strain rates given by

,,::i .. ,ij =  ij - g ij(2

• " .( ' , dt # - . . . . . . . . . . . . . . . . .--
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Sij are the current deviatoric stress components given by

Sij 0 ij ( pp i3).

Sij are the deviatoric stress components measured relative w.

to the current yield surface center given by

S i -S (4)

a.. are the coordinates in stress space of the current yield

surface center, ij are the Cauchy stress components, ij-

are the "true" strain components (discussed in a subsequent

section), ae is the effective stress.given by

e = / ij Sij (5)

and a' is the effective stress measured relative to the

current yield surface center

a ij j . (6)

The function f (ae) is derived from the uniaxial stress-

strain curve and is consistent with the Associated Plas-

ticity theory (a complete discussion is given in

Reference [5]. Derivation of f (ae) for a multilinear
e

representation of the stress-strain curve will be discussed

" "subsequently.

42...... .. ..... ....... .............. ....... . . ..
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7

For plastic strains which are incompressible, the

hydrostatic plastic strain rate is zero. The total hydro-

static strain rate, therefore, is related to the hydrostatic

stress rate by

1- 2v
cpp -s--- a(7)

pp E pp

Engineering materials exhibit different types of

uniaxial hardening behavior when subsequently unloaded

after being plastically deformed. Generally, the behavior

falls between two extremes called kinematic and isotropic

hardening. The uniaxial representation of these behaviors

for a bilinear material are shown in Figure 1. To allow

for various hardening behaviors in the multiaxial formula-

tion, the yield surface is permitted to move and expand

under certain constraints. These motions are controlled by

a single parameter, 6 , which can be varied from 0 to 1. A

value of zero represents isotropic behavior and a value of

1 represents kinematic behavior. The resulting yield sur-

faces in a three-dimensional principle stress space are

shown in Figure 2. The yield surface center moves at a

rate governed by

01
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.0max 4J

yield.

20a

2aa

Hardening

Figure 1: Uniaxial Bilinear Representation of Kinematic
and Isotropic Hardening.
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Initial Hardening
Yield

Stress State
Vector

Intermediate i
Hardening

"'Isotropic Hardening

Figure 2: Hardening Models in Principle Stress Space.
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' ee

0 (otherwise)
0 < a <I 1i

(8)

0 - 0 - Isotropic Hardening

= - Kinematic Hardening

The radius expands according to the relation

Gy = 2 a y + 2 B(amax - ay) (9)

To allow for finite strains and rotations, Updated

Lagrangian approach is adopted [6]. The coordinate system

is convected with the deformation. In this coordinate

system, the "true strain" rate is related to the deformation

rate (or velocity) through

=C (10)ij ijkl k1

In the absence of rotation the stress tensor is related to

the strain rate tensor in the classical manner, i.e., %

jqj

This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero

• . °4



* strain rate, the stress rate is given by where W are the

rotation rates

,, :.-..

a...=W. a. -W.a

"J 'p apj s rpj ip (12)

The total stress-deformation relation is, therefore,

*i • . ?..v .

ij= Cijkl £kl + Wik akj "kj aik (13)

Equations (1) - (13) form a complete incremental

representation of finite plastic deformation. It only

remains, therefore, to quantify the uniaxial behavior

through the function f(ae). There are many functional

ways to represent uniaxial loading behavior. From a

computation standpoint, a multilinear representation is ,

easily implemented and, by allowing for enough segments,

can be arbitrarily accurate. Consider the multilinear

representation of a true stress-true strain curve shown in

Figure 3. The functional relationship between the stress

and strain are given by

'*'c = a a1 (0C 2 - 01) + a (2 3 02) ... (a - am)

(14)
< < a

M . °"

4 The plastic strain rate, therefore, is given by4

p= a /E (15)m e

-,- .,".-- . . . . .
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Using equation (1) and recognizing that for uniaxial de-

formation, effective quantities are proportional to the

uniaxial components, the function f(ae) can be reduced to

f ~ =m/Eoe (16)

The function is only linearly dependent on the current

slope of the uniaxial curve. By specifying enough segments,

virtually any hardening behavior can be accurately described.

The above formulation is chosen for implementation with

the Finite Element Method to be described subsequently. It

is important to recognize that the formulation is

representative of a wide class of materials and can model

many different variations of material hardening. This

formulation has been employed with considerable success in

many investigation of material deformation and fracture

mechanics. Several well known two-dimensional codes were

developed and have been widely employed for many years (see,

for example, (7] and (8]).

- *Lt A~&.2 -. -.. . . . . . . . . . . . . . . . . . . . . . . . . .
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FINITE ELEMENT FORMULATION

r Equations (1), (8) and (9) provide the fundamental

relationships between stress and strain rates. The equilib-

rium conditions (governing equations) for a continuum body ',.

in the absence of body forces and inertia effects can be

written as

a;j/ax. 0 (17)

with the boundary conditions

aIn. = on s

and (18)

u. = ui on Su

where i are the specified loading rates on the boundary

experiencing applied tractions (ST) and ui are the velocities

specified on the remainder of the boundary (Su)

Equation (13) provides the fundamental relation between

the stress state and the deformation gradients. For man),

problems in application the assumption of "small strain"

introduces minimal error (mathematically, this means

assuming infinitesimal displacements and strains). If this

assumption is made, the strain rates are related to the

• .velocity gradients by

~-~ a*' *. *.-: - . -4
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i /ax a/x) (19) ""
" 1

This simplification also means that the reference coordinate

system and the material coordinate system are coincidental

throughout the deformation. In the computer code described, 1-

the option of finite or infinitesimal strain theory is left

to the user. The use finite strains slows convergence

considerably for problems where the deformations are small.

As the strains grow, however, the solutions assuming

infinitesimal theory diverge from the finite strain results.

Eventually infinitesimal solutions will fail to converge

regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for
increments of displacement or by performing the standard I!

Galerkin technique on the governing equations, (17) and (18),

the finite element equations governing the nodal velocities,

U, can be written in terms of the loading rate vector, A,
in the form

K(U) • 0 - A = 0 (20) 17

The standard finite element assumptions made are given by

. . . . . . . .. -. *. .~~ ' .. .. . . . . . . . - - - -. %
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",..:,u = N .U

((21)

Kp fU BTD (U) BdV

elements element volume

where N are the shape functions. The set of rate

equations (20) will be integrated one load increment

(AR) at a given time to determine the corresponding new

displacement increment, AU. The Newton-RaDhson or tangent

stiffness solution procedure is employed. At load increment

L+ 1, the initial solution AU2+l is found from .-

(U L 1 AL+ (2-2)

The "new" displacement is then used in the stiffness matrix,

m

K(UL + AUL+I), and a new correction is obtained fromi=l

-"

; I
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I":-" m

K (U. AU 1 ] A. 1 =R -K -L ..-L. 1"-L -L."

m

UL+ (23)

f K(U) dU F =il

UL

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

L+ / RL+lI < Cl

and (24)

where R L+1 is the total load at step L * 1. i.

In this study, 20-node quadratic isoparametric elements

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

Strains were calculated at the Gauss integration points in

each element from the strain-displacement relations of (19).

*Stresses were cumulatively calculated at the Gauss points

- " _. A,, _ ". -. ', " . .. .. .... . . "-" . ". "__ " " ..-



' from the stress-strain relations.

Directly calculating strains and stresses from the finite 1 _

element relations (21) at points on element boundaries in-

herently yields poor results. This is especially true when

C0 shape functions are employed. A superior approach is to .

calculate the stresses and strains at the Legendre quadrature

points and to extrapolate or smooth them to the boundaries.

This approach has been shown to yield very accurate results U

for a wide variety of geometric mappings. In this study the

smoothing technique as developed in [9] is employed for all

stress and strain evaluations.

Currently, four methods of accounting for the crack tip

singularity are widely employed. Each of these methods is

based on an established technique in LEFM (Linear Elastic

Fracture Mechanics). The first method, the enriched element

approach (where the shape functions are modified with the

asymptotic crack solution vanishing at the nodes) has been

employed both for the multilinear stress-strain models and

for power law hardening models 1101. Enriched elements based

on the power law hardening model assume that the enriched

element is fully yielded. This assumption is physically

unrealistic, especially behind the crack tip. The singular

solution employed for the power law hardening case also

assumes a circular yield zone which is far from realistic.

The solutions generated using enriched elements and a multi-

linear stress-strain assurnption are reasonably accurate pro-

viding a judicious choice of enriched element size and sur-

_ ..'.
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8 - rounding grid characteristics is made. The major drawback

to the use of enriched elements is the computation time

required to obtain convergence due to element incompatibility.

The second method, the most basic approach, uses a very fine

mesh near the crack tip and employs only conventional elements.

This method produces reasonable results far from the crack

region but questionable local results. Convergence is usually

rapid, therefore, gross specimen behavior can be obtained

quickly. 11,ith unrealistically fine grids, good local results

can be obtained (except in the elements bordering the crack

tip) but only at the expense of computer time [11]. The

third method is based on the fact that if isoparametric

elements are chosen with midside nodes, jucicious choice of

the placement of these nodes results in the inducement of a F
VF term in the displacement shape functions (12, 13]. These

elements are essentially equivalent to enriching the shape

functions, however, element compatibility is preserved re-

sulting in faster convergence. The fourth technique of

modeling crack tip behavior is through the use of hybrid

elements where elements bordering a surface with traction

boundary conditions are forced to satisfy those conditions

exactly and the elements bordering a surface with displac-

ment boundary conditions are also forced exactly. The

element boundaries are then matched by using Lagrange multi-

pliers in the variational equations to ensure element

equilibrium and continuity in an approximate sense. Little

work has been done on comparisons of hybrid methods to

., o." -."if
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conventional methods in elastic-plastic crack problems, %I

however, the technique was applied with questionable success

in [14]. The preferred method in the literature is still

to use a very fine mesh and standard elements. Complete

discussions of the above methods can be found in [15-17].

,.. ..:.
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FINITE ELEMENT DISCRETIZATIONS

In this paper, three basic aspects of the finite

element solution of ductile fracture problems are examined.

All three involve a rectangular panel with finite thickness

and a center crack through the thickness. Due to the

unknown singular nature near a crack front and the problem

of the intersection of a crack front with a free surface,

only conventional (quadratic) 20-node isoparametric elements

are employed in this work. Studies on linear elastic

through crack specimens has demonstrated the accuracy of

this approach for predicting local deformation and stress

responses [18).

For all the problems discussed in this paper, the grid

shown in Figures 4a, 4b and 4c is employed. This grid was

used to predict stress intensity factors for linear elastic 6%

problems. The results (discussed in [18]) demonstrate the

accuracy is on the same scale with other approaches. The

advantage of this modeling is, since the singularity is not

accounted for directly, it should be directly employable in

an elastic plastic study. To verify this, results are

compared with experimental measurements in a subsequent

section.

The grid shown consists of 96 isoparametric elements

with 624 total nodes (each element has 20 nndes). The total

number of degrees of freedom is 1872. Runtimes for the

studies to be presented were rather lengthy on a VAX 11/780.

--. *-..*.-
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Typical runtimes for panels loaded to about 1/3 of the

material yield stress converged in approximately 48 CPU

hours. This is fairly consistent with existing benchmarks

." of computer codes which employ the frontal solution method

for solution of the stiffness equations. Obviously it is O,

preferable to run these types of problems on larger and

faster computers if they are available. It should be

appreciated, however, that even large problems can be run on

fairly small machines using the frontal approach.

The elastic results presented in [18] demonstrate the

convergence of the grid. It should be recognized at the

outset that the grid employed in this study is the minimum

required for convergence to the elastic solution. The next

section demonstrates its ability to model elastic-plastic

deformation realistically. While it is never possible for

nonlinear problems without analytic solutions to establish

optimal grid requirements, it is believed that little

reduction in the discretization could be made without

seriously compromising the accuracy of the solution.

Studies which employ fewer degrees of freedom must be

considered suspect.

,.....................

. . . . .. . . . . . . ... ..



26

COMPARISON WITH EXPERIMENT

J,

A panel of overaged 7075 (T7651) aluminum was tested

experimentally. The specimen was a center-cracked panel

with width 8.89cm and crack length to width ratio of 0.5.

The stress-strain curve for the material is shown in

Figure 5. The specimen was loaded to the highest applied

load precluding crack growth and subsequently unloaded.

The residual surface deformations were measured using a

special LVDT probe and measuring technique described in [19).

The same panel was analyzed using the finite element

method using the procedure and discretization described

previously. The panel was loaded incrementally and unloaded

to a zero applied load state (the local plastic state, how-

ever, showed considerable residual deformation and stress as

would be expected). Displacement contours near the inter-

section of the crack with the free surface were generated

from the solution and compared with the average experimental

results. The comparison is summarized in Figure 6. The

solid lines are the numerically predicted contours and the

discrete points are from the experimental data.

The average of the four sides was compared as the local

inhomogeneity and lack of symmetry is virtually eliminated ,

in the experimental average. The results demonstrate the

accuracy of the finite element modeling and solution pro-L ,:,2 cedure being employed. The experimental data and predicted

-.. . . . . . .- . . . - .* * * * . - * . - -* . . ,* *
.." . ."- , - 5-. .. .." .".-. -." ".-./ . .. J.-."."-" .i .. .. ." - :.'. .'. ... -. ..- -.. -.- .. - .. - ". . ..* .. -- '
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contours differ by less than 3%. This is more accurate than

was expected comparing with claims made for the finite ele- I-

ment solution of crack problems in two dimensions. .- ,

The comparison presented above and described fully in

[19] demonstrates the accuracy of the current numerical

approach and modeling. The results predicted subsequently

would model fairly well the true deformation in engineering

fracture specimens. The remainder of the problems to be .

discussed will qualitatively examine some of the more

important aspect of fracture specimens and modeling.

...-I
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MATERIAL HARDENING EFFECTS
°.-'o 1

To investigate the effect of material hardening model.,

a center cracked panel 8.89cm wide was studied. The crack elAJ
length to width ratio is 0.5 and the specimen length to

width ratio is 2.0. The idealization is the same as dis-

cussed previously. The loading is normal to the crack

direction and reaches a maximum load equal to 1/3 for the

material yield stress. The material is modeled as either

exhibiting kinematic hardening behavior, isotropic hardening

behavior or a mixed hardening behavior (as described pre-

viously). Since the global applied loading is monotonic,

the three hardening modeles would predict identical response

if the local deformation were truly proportional in nature

(assuming no crack growth).

Figures 7, 8 and 9 show the yield zones on the surface

of the specimen at maximum load for each of the hardening

models. The local response. is definitely non-proportional.

The isotropic model predicts more yielding on the crack

extent line than either or the other two models. This would

suggest a more ductile response ahead of the crack (implying

a greater tendency toward stable crack growth prior to final

failure). The results with mixed hardening have proven to

be the closest to what is observed experimentally. The

others, therefore, should be viewed with that fact in mind.

The largest affect of hardening model is the yield

'-._, " '2 .:.". .'.'-2.'.'. . . .". ... . . . . . . . .."....."- - -- - " -"" " -- - . ".-.-" '. '.-. . .- . . '
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characteristics on the crack extent line. The maximum

yield radius and the "skewing" of the yield zones is fairly ...

independent of the hardening model. It is important to -'.-.

emphasize, however, that the differences between the pre-

dictions are significant and the local response is highly

non-proportional.

Figures 10, 11 and 12 show the yield zones on the mid-

plane of the specimen. These zones demonstrate the same

hardening effects as do the surface zones. The greatest

influence of hardening model is seen on the line of crack .1

extent. On the midplane of the specimen, a plane-strain

type of zone. would be expected (i.e., similar to zones pre-

dicted with a 2-dimensional plane-strain analysis). The

mixed hardening model demonstrates the most realistic re-

sults (which is consistent with the surface observations).

The results demonstrate that the local response near

a crack is not of the proportional type. This has signifi-

cant implications with respect to valid failure criteria

and analysis models (which will be discussed in the con-

cluding section). The results presented also demonstrate

that a mixed hardening rule is the most realistic for modeling

the aluminum alloys investigated so far and is probably best

for most engineering metals. A complete discussion of the "

hardening modeling effects and the implications of these

findings can be found in [2].
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SPECIMEN THICKNESS EFFECTS

In this study, the specimen thickness is varied and the

different zone sizes and shapes are reported (the same center

cracked panel is used with mixed hardening assumptions).

Figures 13a, 13b, 13c and 13d show the surface yield zones as

a function of thickness. The thickness is varied from l.S

times the ASTM plane strain requirement to a very thin panel

dimensions (total thickness of about 3mm). Even for the

thinnest specimens, the classical "plane stress" zones are

not recovered demonstrating that the assumptions of 2-D

plane stress are not valid for this specimen. Also, even

for very thick specimens, the predicted zone does not con-

form to classical plane strain zones (the surface deforma-

tion will never conform to 2-D assumptions since not only is

the surface normal stress zero but the strains required to

produce plastic incompressibility require a nonuniform nor-

mal strain through the thickness which is incompatible with

2-D plane strain). It is important to remember that a state

of stress with zero normal and anti-plane shear does not

need to reduce to 2-D plane stress.

Figures 14a, 14b, 14c and 14d show the midplane zones
F'I

for the four thicknesses. As the thickness increases, it -7

is obvious that the zones approach plane strain zones (which

they should). Even at the largest thickness, however, they "N

show some skewing due to the finite geometry. From these

-- _.-.- ....x1.:.i
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I

r/a =.04S

Figure 13a: Surface Yield Zones For Specimen With .-

2T =2.54 cm.

r/a 07

Figure 13b: Surface Yield Zones For Specimen With
2T =1.27 cm.
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r/a. .205

r/a .2960

Figure 13d: Surface Yield Zones For Specimren With
2T 3 .35 mm.
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r/a .039~

Figure 14a: Midplane Yield Zones For Specimen With
27 2.54 cm.

U i-/a =0.071

Figure 14b: Midplane Yield Zones For Specimen With
2T 1.27 cm.
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r/a =.193 -

Figure 14c: Midplane Yield Zones For Specimen With
2T =6.35 mm.

r/a =.288

Figure 14d: Midplane Yield Zones For Specimen W-,ith
2T =3.175 mm.
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. results, the ASTM criterion may not be good enough for

ductile materials. -

The yield radii and extent of yielding ahead of the

crack tip are summarized in the tables. It is important

to note that the yield radius changes by about 10% with

thickness, however, the yielding ahead of the tip changes

drastically and, thus, the plastic area changes. Since

more energy is being dissipated with larger areas, the I

ductility and fracture properties are obviously dependent.

This study demonstrates the thickness effects on local

yield characteristics and also mandates 3-D analysis for

accurate quantitative predictions. A complete discussion

on the effects of specimen thickness can be found in [3]. .. ,

I.!
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Thickness rmax/a r0/a

T -2.54 cm 0.307 0.045
T -1.27 cm 0.327 0.075
T *6.35 mm0.331 0.205
T -3.175 mm 0.343 0.296

r mx-~ maximum yield radius

r yield radius along crack line

Table la: Yield Radii As A Function Of Thickness For
Surface Yield Zones.

Thickness r o/

pa/ o/a
T =2.54 cm 0.260 0.039
T =1.27 cm 0.280 0.071
T -6. 35 mm 0.283 0.193
T - 3. 175 mrm 0.299 0.288

Table lb: Yield Radii As A Function Of Thickness For l
Midplane Yield Zones.
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CONCLUSIONS

This paper presents a unified and complete computational

approach to solving elastic-plastic engineering problems.

The application of this approach to fracture specimens is

presented including the mesh discretization necessary to

produce accurate results. Several of the more important

aspects of cracked specimens (i.e., material modeling,

specimen thickness, accuracy requirements) are examined.

The results of the experimental study demonstrate that

the current approach and discretization are extremely accurate

for predicting detailed local deformations. This comparison

is essential for establishing the validity of the computa-

tional procedure and discretization employed. Comparison

of global parameters far from the crack (such as compliaice,

gauge displacement, mouth opening, etc.) are not sufficient

to establish a given approach or modeling as accurate. The

results of this study also demonstrate that the mixed

hardening model is the most accurate for the material studied.

Initially, the effect of hardening parameter was

examined to delineate the differences in local deformation

during unloading. It was discovered, however, that significant :.,

local response differences a.e predicted during the loading

segment also. This is in direct opposition to the assump-

tion of proportional loading often made in the literature.

Indeed, the assumption is imperative for "deformation"

• -
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theory plasticity studies to have any validity. The results

presented (already established through experimental compari-

son) clearly demonstrate that the local response is dis-

tinctly non-proportional. This result also demonstrated

that local fracture and failure criteria are the only criteria r

which are theoretically plausible (as proportional loading is

essential for the validity of global criteria) are local

criteria. This has been suggested by many authors in the

past and has often been a point of argument in the fracture

community. Global criteria such as J-integral, nonlinear

compliance, crack mouth opening, etc., all require propor-

tional local loading. These criteria, therefore, cannot

validly be employed for nonlinear fracture problems.

The effect of specimen thickness was investigated to

determine the range of validity for the assumptions of plane

stress and plane strain near a crack tip. The results

presented demonstrate that even for extremely thin specimens,

the local response does not behave in a plane stress manner.

These results also demonstrate that the local deformation

does not approach plane strain behavior until the thickness

is far beyond the ASTM requirement. While two dimensional-

studies need to be performed as preliminary qualitative in-

vestigations, they cannot be expected to produce results

which predict local deformation quantitatively.

The extensions of the work presented needed to fully

unravel the mysteries of fracture mechanics are endless. Tc

.. .. ...-.
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' ':begin, however, several directions are clear. Computationally,

it is important to extend the algorithms to account for crack

growth in a consistent and accurate manner. The procedure,

however, must be independent of any particular failure

criterion and not require excessive computational require-

ments. Recent work has proposed one approach to the problem

and demonstrated its efficiency and accuracy in two-dimen-

sions. Further study is needed for the extension to three-

dimensions.

The major theoretical area in which more research is

needed is in the area of failure criteria. It is beyond the

scope of this work to review all the criteria which have

been proposed to address nonlinear fracture problems. The

results of the work presented in this report, however,

demonstrate that the global criteria presented must be

abandoned as they rely on the assumption of propositional

loading which is incorrect. The local criteria presented

to date have not been sufficiently tested to establish any

one as a truly valid fracture criteria. The most widely

tested have all failed the critical requirements of geometry

and specimen independence and consistency over a wide range

of applications. Perhaps a new approach is needed. It is

important to continue pursuing local fracture criteria.

The ability to do large deformation, three-dimensional

analysis without the a priori bias of a failure criterion

"-. should help in the development of a consistent and accurate

approach to elastic-plastic fracture problems.

....-....... ... -..-. -.-..... . .
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CHARATERSTICS IN TREDMNIN

E. Moyer, Jr. and H. Liebowtz"

School of Engineering and Applied Science, The George
Washington University, Washington, D.C. ' "

A finite element investigation of the effect of thicknesR on plastic defor- .
mation and yielding characteristics in three-dimensional cracked bodies is-...
presented. It is shourn that the fundamental deformration modes and extent of --plastic deformation are significantly influenced by the specimen thickness. [[![
The results show the transition from'a local plane strain to plane stress -
response near the crack front as the specimen thickness is decreased. While _
the results are generated for a specific aluminum alloy (7075-T7651), the"""-.
predictions for other hardening materials would be qualitatively the same."-.

KEYI%'ORDS -"[

Nonlinear finite-element calculations, plastic deformation, three-dimension- .-
al crack specimens, incremental analysis..'.-

I 'RODUCTION -...

Of fundamental importance to the accurate fracture assessment of components '-
and structures made of metals is the study of ductile fracture processes and
the plastic response near a crack. The basic deformation resporse near the .-
crack front must be resolved accurately for reliable predictions. Fractilre [
criteria have been proposed based on many controlling quantities (e.g., ....
stress, strain, energy, displacements, etc.) both on global and local scale-''"
levels. Uithout exception, all of these criteria require accurate local "-
deformation modeling.

To und, rstand the scale shifting effects from the laboratory specimen to the ,-.,
structural component, it is imperative to discover the effects of speciven .-
thickness on the deformation response. This problem is an essentially .-
three-dimensional one and must: be investigated accordingly. '

.. The purpose of this investigation is to delineate the effect of specimen

.'"thickness on local crack front yielding characteristics in a cracked speci-
-' man. The three-dimensional elastic plastic finite element code developed in '
.;". [1] is employed for the analysis. Specimen thicknesses investigated range""

.- .
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from well beyond ASTM plane-strain requirements to thin sheet dimensions.
The yield zones calculated in this work demonstrate the transition from di-
latational to distortional dominance ahead of the crack tip as a function of
thickness (equivalent to a transition from plane strain to plane stress).
The magnitude as well as the extent of yielding is shown to be highly thick-
ness dependent. The results of this study also demonstrate that two-dimen-
sional analysis based on plane strain (for thick specimens) or plane stress J
(for thin specimens) can fail to accurately model the local response when
simple standards would dictate otherwise.

PLASTICITY FORMULATION

The incremental theory of plasticity employed in this work is based on the
classical rate proportionality assumptions and J flow theory. While the
mathematical details vary with the choice of yield criteria, the salient
features of all incremental theories are the same. This discussion will,
therefore, be confined to the specific theory employed in this work.

Assuming stress strain rate proportionality and J flow theory (which
assumes the plastic deformations are incompressible) the stress-strain rate
relations can be written as (2]

+~ f +2 r a -a > >0
E 2 i e e y e

1 + V S Otherwise
E i"

where:

ei - Epp ij are the deviatoric strain rate components,

V is Poisson's ratio,
E is Young's modulus,
5 iS -a a are the deviatoric stress components,

a . are the coordinates in stress space of the yield surface center

Sij - aij are the deviatoric stress components measured relativeto the current yield center,

Sa is the effective stress,e 2 ij ij

a - SITjsi is the effective stress relative to the current yielde 2 center,

a is the cutrent yie.d stress, and
y
* denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain rate is pro-
portional to the mean stress rate and is given by -

C -- O(2)pp E pp

The function f(a ) is dependent on the uniaxial stress-strain curve and will
e

be discussed subsequently. For a von Mises (J ) material, the center of the
yield surface moves at a rate proportional to ihe projection of the stressK *. .. rate vector onto the local normal to the current yield surface and can be

";° -. '.' written as

. 7
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..*'' _(1 - SI) S/.e a a; 0 ;
e V e

a (3)
*~ ii

0 Otherwise

where 8 varying from 0 to 1 will model hardening behavior from kinematic
(8 " 0) to isotropic (8 - I).

The function f(a ) is derived from the uniaxial stress-strain curve. For a
uniaxial specimef, eluation (1) reduces to

3. 2 1+ v
T(Wamial - Ctransverse) E ( -) e + f(ae ) ae e

in the plastic range. Thus,

fvaoi (axiai - Ctransverse)/ e e

Invoking incompressibility (i.e., he -f unc""
f(a ) can be written as transverse 2 axial

e
(ae plasticl e e (6)

If the uniaxial stress-strain curve is expressed in a multilinear fashion,
the stress-strain relation is

F +- a1 a... + (oy (7)

where a_. <a< a and a is given bym m

EAC - Aam m (8)
m A

From equation (7), the plastic strain rate is given by

(9)plastic E

and thus from (6)
a

f(ae) ."' (10)e EGe

Equations (1), (2), (3) and (10) provide a complete set of elastic-plastic
constitutive relations. Together with the equilibrium equations and the
strain-displacement relations, a governing system will be formed. It is
important to note that the constitutive formulation outlined above is I.
acceptable for finite as well as infinitesimal strains. Also of importance
is the fact that this formulation is strain-rate independent. This assump-
tion appears to be realistic for most engineering metals at-room temperature
(or cooler). For high temperature problems a rate-.independent formulation
is dubious.

Equations (1), (2), (3) and (10) provide the fundamental relationships be-
tween stress and strain rates. The equilibrium conditions (governing equa-
tions) for a continuum body in the absence of body forces and inertia
effects can be written as "
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ij /xj 0 (11)

with the boundary conditions

;ijnj on S
jj T~fl~

and A (12)

u = u i on S

where T are the specified loading rates on the boundary experiencing applied

tractions (S ) and u are the velocities specified on the remainder of the
boundary (Su. Utlizing the standard infinitesimal strain-displacement
relations

E (Bu /3x + au /Sxi) (13)

and either employing the Principle of Virtual Work for increments of dis-
placement or by performing the standard Galerkin technique on the governing
equations, (11) and (12), the finite element equations governing the nodal
velocities, U can be written in terms of the loading rate vector, R, in
the form

K(U) •U- R -0 (14)

The standard finite element assumptions made are given by

u N U

B *U -(15) .-

D(U) • "

K(U) = BTD(U) B dA
- - elements element volume

where N are the shape functions. The set of rate equarions (14) will be in-
tegratid one load increment (AR) at a given time to determine the corre-
sponding new displacement increment, AU. The Newton-Raphson or tangent
stiffness solution procedure is employid as described in [3].

PROBLEM DESCRIPTION

To study the effects of specimen thickness on the yielding characteristics
of typical fracture specimens, a finite center-cracked plate was chosen for
investigation. The standard mode I configuration shown in Fig. 1 was
analyzed for total thicknesses of

2T - 2.54 cm 2T - 1.27 cm
2T - 6.35 mm 2T - 3.175 mm

The material investigated was a 7075-T7651 aluminum alloy with elastic pro-
perties

E - 7.24 E+04 MPa

v - 0.3

o 4.07 E+02 MPa
y

The uniauial stress-strain curve is shown in Fig. 2.
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Fig. 1. Through crack geometry and loading.
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Fig. 2. Uniaxial stress-strain curve for 7075-T6751 a.Iuiintum.

The finite element discretization employed in the analysis utilizes 20-Node
quadratic isoparametric elements exclusively. A fine-mesh near the crack
front is employed for accurate modeling. The grid characteristics and con-
vergence properties are discussed in [1,4]. The maximum load applied was

a mx- 1.77 E+02 MPa

j A hardening parameter of -0.5 was also assumed in the analysis.

RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of the four thick-
nesses studied were calculated and plotted both on the surface and midplane . 1

of the specimen. The results demonstrate the significant influence thick..r
news has both on the nature and extent of the yielding.



. I-.. 7 P. P...

•' :,: .... .

Figure 3a is a plot of the von Mises stress contour corresponding to the
specimen yield stress calculated at the maximum load on the surface of the
2.54 cm thick specimen. As expected for a thick specimen, this zone has the
characteristic form of a plane strain yield zone (i.e., minimal yielding
ahead of the crack tip and a very upright yield zone). The maximum extent
of yielding is 30.7% of the half crack length which is consistent with the
small strain assumptions made in the analysis requiring contained yielding.
Figure 3b is a plot of the surface zones for a specimen with total thickness
of 1.27 cm. The yield zone is slightly wider (more rounded) with this - -

thickness. The maximum radius is now 32.7% of the half crack length and the
yielding ahead of the tip has increased (though it is still small). The
zone still maintains the basic plane strain characteristics at this thick- --

ness.

Figure 3c shows the surface yield
zone for a specimen with thickness of
6.35 mm. The zone is now much wider
with a larger maximum radius and
yield extent ahead of the tip. The
zone no longer exhibits the plane
strain characteristics but is in
transition between plane strain and
plane stress. Figure 3d is a plot of
the surface yield zone for a specimen
with total thickness of 3.175 mm.___-

The zone is significantly more
rounded than any of the previous r/a .04S
zones with a larger maximum radius
and yield extent. The maximum yield Fig. 3a. Surface yield zones for
radii and extent of yielding ahead specimen with 2T - 2.54 cm.
of the crack tip for the four thick-
ness surface zones are given in
Table la. These yield parameters
both increase with decreasing thick- /
ness as was expected. The final /,-
zone at a thickness of 3.175 mm has - "
Lhe rotu-'ded characteristic of a 0
plane stress yield zone. The direc-. .N

tion of maximum yielding, however,
is still a fairly large angle rela-
tive to the crack line suggesting 4 1 f
some influence of dilatation. / ,075
Though for this problem (with a .

relatively small amount of plastic Fig. 3b. Surface yield zones for
deformation present) the difference specimen with 2T - 1.27 cm.
between the maximum radii is not
large, the nature and extent of
yielding ahead of the crack tip show a large dependence on the specimeu
thickness.

Figure 4a is a plot of the von Mises stress contour corresponding to the
material yield stress on the midplane of the 2.54 cmm thick specimen. The
zone is typical of plane strain zones and is smaller than the surface zone
for the same thickness specimen. The shape of the zone with a minimal ex- _.-
tent of yielding ahead of the crack tip suggests high dilatation in that
region. The midplane zone for the 1.27 cm thick specimen is shown in



- " Fig. 4b. The zone is larger than that
of the thicker specimen, however,

there is still minimal yielding ahead
of the tip. The angle of maximum
yielding is more acute than in the
thicker specimen. The stress state,
however, would still be characterized
by plane strain.

Figure 4 c shows the midplane yield

zone for the 6.35 mm thick specimen. tic .2"

The zone is considerably wider and
more rounded than for the thicker
specimens. It shows characteristics Fig. 3c. Surface yield zones for
of both plane strain and plane specimen wh 65

stress zones suggesting a region of
transition. Figure 4d is a plot of
the midplane yield zone for the
3.175 mm thick specimen. The zone
is basically a plane stress zone
and is larger than for the thicker
specimens. The maximum yield radii
and radius of yielding ahead of
the crack tip on the specimen mid-
planes are given in Table lb. Both
increase with decreasing thickness*
as was expected. In all cases, the / .296
midplane yield zones are smaller
than the surface zones. Fig. 3d. Surface yield zones for

specimen with 2T - 3,175 Mm.

, 1Z

r/ -.039 r - 0.071

Fig. 4a. Midplane yield zones for Fig. 4b. Midplane yield zones for

specimen with 2T 2.54 cm. specimen with 2T - 1,27 cm.

/1 --.
:..

• -/ 
..-

r/a *.193 ric .21

Fig. 4c. Midplane yield zones for Fig. 4d. Midplane yield zones for
specimen with 2T - 6.35 mm. specimen with 2T - 3.175 ,.
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TABLE la Yield Radii as a function TABLE lb Yield Radii as a Function of
of Thickness for Surface Thickness for Midplane Yield
Yield Zones. Zones.

Thcns ro.// Thic sou s~u/s/

T * 2.54 e 0.307 0.045 T * 2.54 Cm 0.260 0.039 4,...

T 1.27 ca 0.327 0.075 T - 1.27 em 0.280 0.071
T- 6.35in 0.331 0.203 T -6.35m 0.283 0.193 r
T - 3.175 - 0.343 0.296 T - 3.175 - 0.299 0.288

r - maximum yield radius r - yield radius along crack line
max o0."-_

CONCLUS IONS

The results of this study demonstrate the thickness dependence of the yield
zones near a crack front on specimen thickness. It is shown that both the
extent of plastic deformation and the dominance of deformation type (i.e.,
dilatation or distortion) are controlled by the thickness. The nature of
the deformation is fundamental to the understanding of the incipient frac-.
ture processes. The delineation of the fundamental deformation response
near a three-dimensional crack front is an imperative first step in the L
understanding and accurate prediction of ductile fracture processes.

To further the understanding of ductile fracture, it is necessary to compare
theoretical and experimental deformation predictions local to the crack
front. Only thrLough such comparisons can an assessment be made of the
accurary and rp.iability of the numerical methods fr "...-,st, aualysis. To-
ward this goal, it is proposed to measure the tesidci.'. uefri.,iation on the
surface of the specimen in the unloaded state. The theoretical study pre--
sented above demonstrates that the finite element predictions are qualita-
tively realistic and sensitive to specimen thickness. Comparison with ex-
perimental results will delineate the grid characteristics and hardening
models which best model specific geometric and material applications. After
successful "tuning" of the finite element model, a complete description of
the stress and energy state in a cracked body can be predicted with confi-
dence. Once fully three-dimensional stress fields are predii.ted, ductile
failure theories can be tested and skeptically compared without the bias of
unrealistic analytical approximations,
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